26 research outputs found

    Hereditary breast and ovarian cancer: assessment of \ud point mutations and copy number variations in \ud Brazilian patients

    Get PDF
    Background \ud Germ line mutations in BRCA1 and BRCA2 (BRCA1/2) and other susceptibility genes have \ud been identified as genetic causes of hereditary breast and ovarian cancer (HBOC). To identify \ud the disease-causing mutations in a cohort of 120 Brazilian women fulfilling criteria for \ud HBOC, we carried out a comprehensive screening of BRCA1/2, TP53 R337H, CHEK2 \ud 1100delC, followed by an analysis of copy number variations in 14 additional breast cancer \ud susceptibility genes (PTEN, ATM, NBN, RAD50, RAD51, BRIP1, PALB2, MLH1, MSH2, \ud MSH6, TP53, CDKN2A, CDH1 and CTNNB1). \ud Methods \ud Capillary sequencing and multiplex ligation-dependent probe amplification (MLPA) were \ud used for detecting point mutations and copy number variations (CNVs), respectively, for the \ud BRCA1 and BRCA2 genes; capillary sequencing was used for point mutation for both variants \ud TP53 R337H and CHEK2 1100delC, and finally array comparative genomic hybridization \ud (array-CGH) was used for identifying CNVs in the 14 additional genes. \ud Results \ud The positive detection rate in our series was 26%. BRCA1 pathogenic mutations were found \ud in 20 cases, including two cases with CNVs, whereas BRCA2 mutations were found in 7 \ud cases. We also found three patients with the TP53 R337H mutation and one patient with the \ud CHEK2 1100delC mutation. Seven (25%) pathogenic mutations in BRCA1/2 were firstly \ud described, including a splice-site BRCA1 mutation for which pathogenicity was confirmed by \ud the presence of an aberrant transcript showing the loss of the last 62 bp of exon 7. \ud Microdeletions of exon 4 in ATM and exon 2 in PTEN were identified in BRCA2-mutated and \ud BRCA1/2-negative patients, respectively. \ud Conclusions \ud In summary, our results showed a high frequency of BRCA1/2 mutations and a higher \ud prevalence of BRCA1 (64.5%) gene. Moreover, the detection of the TP53 R337H variant in \ud our series and the fact that this variant has a founder effect in our population prompted us to \ud suggest that all female breast cancer patients with clinical criteria for HBOC and negative for \ud BRCA1/2 genes should be tested for the TP53 R337H variant. Furthermore, the presence of \ud genomic structural rearrangement resulting in CNVs in other genes that predispose breast \ud cancer in conjunction with BRCA2 point mutations demonstrated a highly complex genetic \ud etiology in Brazilian breast cancer families.Fundação de Amparo à Pesquisa do Estado de São Paulo (2008/57887- 9).Conselho Nacional de Desenvolvimento Científico e Tecnológico (408833/2006-8

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido

    Early-onset breast cancer patients in the South and Southeast of Brazil should be tested for the TP53 p.R337H mutation

    No full text
    Abstract Germline TP53 mutations are associated with Li-Fraumeni syndrome (LFS), a disease that predisposes carriers to a wide variety of early onset tumors. In southern and southeastern Brazil, a high frequency of a germline TP53 mutation, p.R337H, was diagnosed in 0,3% of the population due to a founder effect. Carriers are at risk for developing cancer but the penetrance is lower than in typical DNA binding domain mutations. To date, only a few families were detected and diagnosis of carriers remains a challenge. Therefore, the inclusion of additional criteria to detect p.R337H carriers is necessary for the Brazilian population. We assessed the A.C. Camargo Cancer Center Oncogenetics Department database in search of common characteristics associated with p.R337H families that did not fulfill LFS/LFL clinical criteria. Among 42 p.R337H families, three did not meet any LFS/LFL criteria. All cases were young female patients with breast cancer diagnosed before age 45 and with no family history of LFS linked-cancers. Our results suggest that screening for the germline TP53 p.R337H mutation should be indicated, along with BRCA1 and BRCA2 genetic testing, for this group of patients, especially in the South and Southeast of Brazil

    Genomic profile of a Li-Fraumeni-like syndrome patient with a 45,X/46,XX karyotype, presenting neither mutations in TP53 nor clinical stigmata of Turner syndrome

    No full text
    Li-Fraumeni syndrome (LFS) is a hereditary disorder that predisposes patients to several types of cancer and is associated with TP53 germline mutations. Turner syndrome (TS) is one of the most common aneuploidies in women. Patients with TS have a higher risk of developing cancer, although multiple malignant tumors are extremely rare. Herein, we describe a patient with a 45,X/46,XX karyotype with no classic phenotype of TS. She presented with a clinical diagnosis of Li-Fraumeni-like syndrome (LFL), showing papillary thyroid carcinoma and fibrosarcoma of the left flank, and had no TP53 germline mutations. Genome-wide analysis of copy number variations (CNVs) was assessed in DNA from peripheral blood cells and saliva. A total of 109 rare CNVs in the blood cells, including mosaic loss of the X chromosome (76% of cells), were identified. In saliva, three rare CNVs were detected, all of them were also detected in the blood cells: loss of 8q24.11 (EXT1), gain of 16q24.3 (PRDM7 and GAS8), and the mosaic loss of the X chromosome (50% of cells). Results of conventional G-banding confirmed the 45,X/46,XX karyotype. Surprisingly, the patient presented with an apparently normal phenotype. The PRDM and GAS8 genes are potential candidates to be associated with the risk of developing cancer in this LFL/TS patient.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients

    No full text
    Despite one third of breast (BC) and colorectal cancer (CRC) cases having a hereditary component, only a small proportion can be explained by germline mutations. The aim of this study was to identify potential genomic alterations related to cancer predisposition. Copy number variations (CNVs) were interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark in the deleted region. The ROBO1 deletion in a putative transcriptional regulatory region, its down-expression in tumor samples, and the results of the co-segregation analysis revealing the presence of the alteration in affected individuals suggest a pathogenic effect of the ROBO1 in cancer predisposition.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    DNA Methylation Levels of Melanoma Risk Genes Are Associated with Clinical Characteristics of Melanoma Patients

    Get PDF
    In melanoma development, oncogenic process is mediated by genetic and epigenetic mutations, and few studies have so far explored the role of DNA methylation either as predisposition factor or biomarker. We tested patient samples for germline CDKN2A methylation status and found no evidence of inactivation by promoter hypermethylation. We have also investigated the association of clinical characteristics of samples with the DNA methylation pattern of twelve genes relevant for melanomagenesis. Five genes (BAP1, MGMT, MITF, PALB2, and POT1) presented statistical association between blood DNA methylation levels and either CDKN2A-mutation status, number of lesions, or Breslow thickness. In tumors, five genes (KIT, MGMT, MITF, TERT, and TNF) exhibited methylation levels significantly different between tumor groups including acral compared to nonacral melanomas and matched primary lesions and metastases. Our data pinpoint that the methylation level of eight melanoma-associated genes could potentially represent markers for this disease both in peripheral blood and in tumor samples
    corecore