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Inmelanoma development, oncogenic process ismediated by genetic and epigeneticmutations, and few studies have so far explored
the role of DNA methylation either as predisposition factor or biomarker. We tested patient samples for germline CDKN2A
methylation status and found no evidence of inactivation by promoter hypermethylation. We have also investigated the association
of clinical characteristics of samples with the DNA methylation pattern of twelve genes relevant for melanomagenesis. Five genes
(BAP1, MGMT, MITF, PALB2, and POT1) presented statistical association between blood DNA methylation levels and either
CDKN2A-mutation status, number of lesions, or Breslow thickness. In tumors, five genes (KIT, MGMT, MITF, TERT, and TNF)
exhibited methylation levels significantly different between tumor groups including acral compared to nonacral melanomas and
matched primary lesions and metastases. Our data pinpoint that the methylation level of eight melanoma-associated genes could
potentially represent markers for this disease both in peripheral blood and in tumor samples.

1. Introduction

Cutaneousmelanoma has an increasing incidence rate world-
wide [1]. The occurrence of this type of cancer is associated
with skin color, geographic localization, and intermittent
exposure to sunlight, and the former is probably the major
cause of the increase in melanoma cases [2].

The risk of melanoma development rises 30- to 70-fold
in individuals with family history of the disease [3]. Two
genes harboring high-risk germlinemutations have been rec-
ognized: CDKN2A [4–6] and CDK4 [7]. Germline mutations
in additional genes were recently associated with melanoma
occurrence: MITF [8], BAP1 [9], TERT promoter [10], POT1

[11], and MGMT [12]. In addition, some alterations in genes
known to be related to melanin synthesis, such as MC1R
[13, 14], have been reported as low-risk variants formelanoma
development. The implication of other candidate genes in
melanoma predisposition is supported by less conclusive
evidence, such as PALB2, in which a deleteriousmutation has
been detected in a single individual affected by four kinds of
cancer, including melanoma [15].

In addition to genetic mutations, early events of anoma-
lous DNA methylation at specific loci (epimutations) can
eventually result in cancer predisposition, as already reported
for colorectal [16, 17], gastric [18], and breast cancers [19].
Although melanoma epimutations have not been identified
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so far [20, 21], abnormal methylation levels of TNF and
TNFRSF10C genes have been associated with melanoma
risk [22, 23]. Moreover, somatic DNA methylation changes
are crucial for skin melanoma progression [24]. Recently,
the occurrence of KIT epigenetic silencing in cutaneous
melanomas has been demonstrated [25], supporting earlier
studies that had shown decrease ofKIT expression associated
with melanoma progression [26].

In this work, we investigated the methylation pattern
of germline CDKN2A and other 10 melanoma-related genes
in leukocytes of melanoma patients (familial and sporadic
cases), relating these findings to melanoma occurrence and
clinical characteristics.Themethylation profile of these genes
and KIT was also investigated in a group of cutaneous
melanomas.

2. Material and Methods

This was a retrospective study based on samples from
melanoma patients retrieved from the A.C.Camargo Cancer
Center Biobank, São Paulo, Brazil, and approved by the
Institutional Ethics Committee Board (1695/12 and 1765/13).

2.1. Peripheral Blood Samples of Melanoma Patient and
Control Groups. Melanoma patients were treated at the
A.C.CamargoCancerCenter, São Paulo, Brazil. DNA samples
were extracted fromperipheral blood obtained from 69 unre-
lated cutaneous melanoma patients who had not previously
received chemotherapy, most of them being stage I (58.0%).
The patients were classified into three groups: hereditary
melanoma carrying pathogenic CDKN2A-mutations (𝑛 = 8),
familial history of melanoma without CDKN2A-mutations
(𝑛 = 20), and sporadic cases (without family history of
the disease; 𝑛 = 41). The 20 hereditary melanoma patients
who had previously tested negative for CDKN2A-mutations
[27] fulfilled at least one of the following criteria: (a) familial
melanoma (family history of three or more relatives of
two consecutive generations with melanomas, at least one
case before 50 years old; 𝑛 = 9) or (b) multiple primary
melanomas (≥3 primary lesions, 𝑛 = 8; or ≥2 primary
melanomas, one of which before 35 years old, 𝑛 = 3).

The control group was composed of 12 individuals with-
out cancer history, matched by age (range for each being 10
years) and gender to the subset of melanoma patients who
were analyzed by DNA methylation array.

2.2. Cutaneous Melanoma and Melanocyte Samples. Frozen
tissues from 18 unrelated primary skin melanomas (five acral
and thirteen nonacral subtypes) were retrieved from the
A.C.Camargo Tissue Bank. DNA extraction was processed at
A.C.Camargo DNA and RNA Bank [28]. Paired metastases
were available for seven tumors. The majority of tumors
were classified as stage III (66.7%), but this information was
missing for the remaining samples.

The primary cultures of melanocytes were provided
by the School of Pharmaceutical Sciences (University of
São Paulo). Primary skin cell cultures (melanocytes) were
obtained from foreskin samples of three healthy donors [29]

under approval of the local ethics committee (CEP HU/USP
943/09).

2.3. Pyrosequencing. Quantitative bisulfite pyrosequencing
for CDKN2A promoter was performed using PyroMark Q96
CpG p16 (Qiagen), which analyzes seven CpG sites of p16
isoform (position +148 to +174 of the ENSG00000147889).
A total of 68 peripheral blood samples from patients were
analyzed: seven CDKN2A-mutation carriers, 20 hereditary
melanoma patients without CDKN2A-mutations, and 41
sporadic melanoma patients. The methylation levels were
obtained using PyroMark Q96-CpG Software (Qiagen),
which provides the percentage of methylated cytosines rel-
ative to the sum of methylated and unmethylated cytosines.

2.4. HM450K Genome-Wide Methylation Analysis. DNA
methylation array was performed in samples from 18 cuta-
neous melanomas, three melanocyte primary cultures, and
leukocyte samples from 12 control individuals and from a
subset of 39 melanoma patients (eight CDKN2A-mutation
carriers, 19 hereditary melanoma patients without CDKN2A-
mutations, and 12 sporadic melanoma patients).

Bisulfite modification was performed on 1 𝜇g of DNA
using EZ DNA methylation kit (Zymo Research). The DNA
methylation levels of CpG sites were obtained using the
Infinium HumanMethylation450K BeadChips (HM450K,
Illumina), according to the manufacturer’s instructions. Bio-
conductor IMA package was applied for quality control
of array methylation data [30]. We removed from further
analyses probes that were lacking beta-values, containing
SNPs, mapped at chromosomes X and Y, or with detection
𝑃 values > 0.01. Probe type bias adjustment was achieved
by Beta Mixture Quantile dilation (BMIQ) using ChAMP
package [31].

The level of methylation of each CpG probe was
calculated as a beta-value ranging from 0 to 1 (0 for
totally unmethylated CpG sites and 1 for fully methy-
lated sites). Beta-values were retrieved for all CpG probes
mapped within DNA sequences associated with the BAP1,
CDK4, CDKN2A, KIT,MC1R, MGMT,MITF, PALB2, POT1,
TERT, TNF, and TNFRSF10C genes (see Supplementary
Tables 1 and 2 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/376423). CpG sites were
grouped into two categories, according to the annotation of
the transcripts provided by Illumina, which is based on the
UCSC database: “promoter” region (CpG probes mapped
at TSS1500, TSS200, 5󸀠UTR, or 1st exon) and “gene body”
(remaining exons and intron probes). Methylation levels for
promoters and bodies were obtained using the beta-value
means of the corresponding CpG probes.

Microarray methylation data from peripheral blood were
deposited into NCBI’s Gene Expression Omnibus under
accession number GSE54939 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE54939).

2.5. Statistical Analysis of HM450K Data. DNA methylation
differences between groups were tested for significance using
either Mann-Whitney test or Kruskal-Wallis with Dunn’s
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Multiple Comparison Post-test. The analysis comparing
primary cutaneous melanoma and paired metastasis was
performed using paired 𝑡-test.

3. Results

The quantitative bisulfite pyrosequencing of CDKN2A pro-
moter was investigated to determine if any of the melanoma
patients exhibited inactivation of this gene by hypermethy-
lation. Data showed no evidence of CDKN2A hypermethy-
lation in leukocytes of these patients. Among CDKN2A-
mutation carriers, the methylation mean was 0.63% (ranging
from 0 up to 1.5%), hereditary melanoma patients without
CDKN2A-mutations showed a mean of 0.52% (0–3.0%), and
sporadic melanoma patients presented a mean of 0.35% (0–
1.5%). Statistical association between the clinical characteris-
tics of melanoma patients and the methylation levels of p16
encode region was not detected (Breslow thickness 𝑃 = 0.78;
number of melanomas 𝑃 = 0.84).

Next, we compared the levels of DNA methylation for
CpG sites mapped in eleven melanoma-associated genes
(BAP1, CDK4, CDKN2A, MC1R, MGMT, MITF, PALB2,
POT1, TERT, TNF, and TNFRSF10C) between melanoma
patients and controls. Only the gene body of MGMT
showed a low level of methylation increase in CDKN2A-
mutated patients compared to sporadic melanoma patients
(2% increase in the methylation level, 𝑃 = 0.02, Supplemen-
tary Table 3). Additionally, DNA methylation levels at the
promoter regions of BAP1,MITF, and PALB2 genes were sta-
tistically associatedwith the number ofmelanomas presented
by the individual and a hypermethylation of POT1 promoter
was associatedwith Breslow thickness of the tumors (Table 1).

We also investigated the DNA methylation levels of
twelve melanoma-associated genes (BAP1, CDK4, CDKN2A,
KIT, MC1R, MGMT, MITF, PALB2, POT1, TERT, TNF, and
TNFRSF10C) by comparingmelanoma samples with cultured
melanocytes. The methylation levels at the gene bodies of
MGMT, TERT, and TNF were significantly lower in tumors,
while both body and promoter of KIT were hypermethylated
(Table 2). Acral melanomas exhibited differential methyla-
tion at the gene bodies of MGMT (4% hypomethylation in
acral melanoma group, 𝑃 = 7𝑒 − 3, Supplementary Table 4)
and TERT (9% hypermethylation in acral melanoma group,
𝑃 < 1𝑒 − 3, Supplementary Table 4) compared to nonacral
tumors. We did not find significant differences comparing
tumors from patients who did develop or not metastases
(Supplementary Table 5); however, in the analysis of the seven
paired primary-metastasis melanoma samples, the gene body
of MITF was found to be hypomethylated in metastasis (8%
of decreased methylation in relation to primary tumor, 𝑃 =
0.02, Supplementary Table 6).

4. Discussion

Aberrant DNA methylation is usually an early and stable
event in tumorigenesis and could be used for detecting and
monitoring diseases [32]. Previous studies in melanoma and
surrogate samples have revealed epigenetic markers based on

methylation patterns of LINE-1 [33, 34], RASSF1A [35],TSLC1
[36],andMGMT [37]. In this study, we have investigated the
methylation levels of twelvemelanoma genes to evaluate their
potential role as predisposition factors and/or biomarkers.
In fact, control of gene expression by DNA methylation has
already been described for half of these investigated genes
in different types of cancer [38–43]. Considering that the
functional impact of DNA methylation in gene expression
is better understood for CpGs mapped at gene promoters,
we analyzed separately the probes mapped at promoters and
gene bodies. Most of the genes here analyzed exhibited CpG
islands in their promoter sequences, except for MITF and
TNF.

Independent cohorts of patient peripheral blood and
melanoma samples were analyzed. Overall, the detectedDNA
methylation differences in blood were very small (<5%),
while tumors exhibited higher (>10%) differences. Indeed,
previous studies have shown that epigenetic biomarkers
in peripheral blood exhibit very small differences [44–47].
Significant DNA methylation changes were identified in
peripheral blood mainly at gene promoters, while in tumors
they appeared to cluster at gene bodies. Also, melanomas
were mainly hypomethylated when compared to the control
melanocytes; however, we cannot exclude the possibility that
the DNA methylation pattern of the melanocytes could be
altered because of in vitro conditions [48].

MGMT encodes a repair protein which removes alkyl
groups from the O

6
-position of guanine residues [49] and its

promoter methylation has been described as a biomarker in
several studies, especially for glioblastoma [50] and colorectal
cancer [51]. In melanoma, epigenetic silencing of this gene
has been demonstrated in tumors and serum of patients
[52, 53], suggesting that this event would be important for
tumor development. In our study, we detected methylation
differences at MGMT body both in peripheral blood and in
tumor samples: CDKN2A-mutated patients showed a low-
level hypermethylation in leukocytes compared to other
melanoma patients, while tumors showed hypomethylation
compared to melanocytes. Even though gene body methy-
lation is a yet poorly explored mechanism, it has been
reported in association with increased gene expression [54].
However, the relationship between intragenic methylation
and gene expression appears not to be linear, since low
body methylation levels have been associated with both low
and high expression, and high body methylation levels have
been already reported linked to intermediate expression [55].
Additional studies in melanomas are necessary to clarify the
role of the observed methylation changes in the expression of
theMGMT gene.

MITF is a transcription factor that controls genes of cell
cycle and melanogenesis [56, 57]. Hypermethylation of the
MITF promoter was detected in peripheral blood of those
melanoma patients who developed more than one lesion
(multiple primary melanomas), and MITF gene body was
found to be somehow hypermethylated in primary tumors
compared to metastasis. Interestingly, MITF expression was
reported as variable among melanoma specimens and even
intratumor [58], with high expression levels being associ-
ated with either differentiation or proliferation while low
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Table 2: Methylation levels of melanoma susceptibility genes in primary melanomas and melanocyte primary cultures from healthy donors.

Gene name Chromosome UCSC accession (transcripts) Genic region CpG loci
number Melanomas (SD) Melanocytes (SD) 𝑃 value

BAP1 3 NM 004656 Body 5 0.52 (0.44) 0.44 (0.46) 1.00
NM 004656 Promoter 10 0.04 (0.01) 0.05 (0.02) 0.16

CDK4 12 NM 000075 Body 2 0.18 (0.09) 0.06 (0.02) —
NM 000075 Promoter 13 0.22 (0.30) 0.22 (0.30) 0.54

CDKN2A 9 NM 058195 Promoter 4 0.12 (0.03) 0.08 (0.05) 0.20

KIT 4 NM 000222, NM 001093772 Body 9 0.50 (0.30) 0.17 (0.28) 0.01
Promoter 5 0.32 (0.24) 0.08 (0.08) 0.03

MC1R 16 NM 002386 Promoter 9 0.27 (0.32) 0.07 (0.05) 0.67

MGMT 10 NM 002412 Promoter 14 0.42 (0.35) 0.44 (0.42) 0.99
NM 002412 Body 99 0.74 (0.15) 0.83 (0.20) <1e − 4

MITF 3

NM 000248 Promoter 3 0.53 (0.09) 0.06 (0.05) 0.1
NM 000248 Body 5 0.79 (0.20) 0.57 (0.45) 0.42
NM 006722 Promoter 4 0.79 (0.10) 0.80 (0.16) 0.89
NM 006722 Body 20 0.78 (0.17) 0.64 (0.38) 0.78
NM 198158 Promoter 3 0.53 (0.09) 0.06 (0.05) 0.10
NM 198158 Body 5 0.79 (0.20) 0.57 (0.45) 0.42
NM 198159 Promoter 5 0.04 (8.4𝑒 − 3) 0.04 (1.1𝑒 − 3) 0.55
NM 198159 Body 29 0.67 (0.29) 0.56 (0.39) 0.77
NM 198177 Promoter 4 0.77 (0.16) 0.59 (0.29) 0.20
NM 198177 Body 14 0.77 (0.19) 0.61 (0.42) 0.84
NM 198178 Promoter 2 0.94 (0.04) 0.97 (0.01) —
NM 198178 Body 10 0.73 (0.20) 0.48 (0.43) 0.28

PALB2 16 NM 024675 Body 5 0.22 (0.40) 0.22 (0.39) 0.84
NM 024675 Promoter 12 0.07 (0.08) 0.08 (0.09) 0.37

POT1 7

NM 001042594 Body 1 0.95 (0.04) 0.94 (0.01) —
NM 001042594 Promoter 10 0.12 (0.23) 0.14 (0.26) 0.31
NM 015450 Body 1 0.95 (0.04) 0.94 (0.01) —
NM 015450 Promoter 10 0.12 (0.23) 0.14 (0.26) 0.31

NR 003102, NR 003103, NR 003104 Body 3 0.33 (0.53) 0.33 (0.52) 0.70
NR 003102, NR 003103, NR 003104 Promoter 7 0.16 (0.27) 0.19 (0.30) 0.71

TERT 5 NM 198255, NM 198253 Body 61 0.67 (0.13) 0.71 (0.19) 0.03
NM 198253, NM 198255 Promoter 6 0.52 (0.24) 0.38 (0.24) 0.49

TNFRSF10C 8 NM 003841 Promoter 13 0.54 (0.17) 0.47 (0.32) 0.64
NM 003841 Body 3 0.47 (0.13) 0.34 (0.38) 0.70

TNF 6 NM 000594 Body 5 0.76 (0.06) 0.89 (0.07) 0.01
NM 000594 Promoter 13 0.54 (0.17) 0.47 (0.32) 0.64

SD: standard deviation; promoter: probes mapped at TSS1500, TSS200, 5󸀠UTR, or 1st exon; values highlighted in bold are statistically significant (𝑃 < 0.05,
Mann-Whitney test).

expression is related to an invasive potential [59]. This dual
role of MITF according to its expression level could be
involved in the different patterns of methylation observed
in peripheral blood and tumors, suggesting that (a) high
methylation levels at MITF promoter in leukocytes could
be linked to a more aggressive disease and (b) higher
methylation level at MITF gene body of primary tumors
compared to metastasis would have a controlling role in
cell cycle. Lauss and colleagues [60] have recently shown

that MITF expression in melanomas is controlled by DNA
methylation, but unfortunately RNA was unavailable to
investigate whether the low DNA methylation changes here
detected would impactMITF expression.

We also detected DNA methylation differences between
acral and nonacral melanoma subtypes atMGMT and TERT
bodies. Acral melanoma is an uncommon subtype not asso-
ciated with sunburn and occurs more frequently in older and
non-Caucasian individuals [61]. Additionally, acral driver
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mutations are distinct compared to cutaneous melanomas.
For instance, KIT mutations are more common in acral
than in the other melanomas [62, 63]. We did not observe
significant difference inKITmethylation levels between acral
and nonacral subtypes, but melanomas as a group were
hypermethylated compared to melanocytes. The detection of
KIT hypermethylation in the advanced tumors of this study
(mostly stage III melanomas) was not unexpected and had
already been described [25, 64].

The CDKN2A methylation level was analyzed by the use
of microarray (HM450K) and pyrosequencing. This gene
encodes p16 and p14 proteins, the p16 isoform harbor-
ing the majority of the germline mutations that confer a
high melanoma risk [65]. Since the array platform contains
CDKN2A CpGs not specifically associated with p16, we
investigated additional CDKN2A promoter CpGs by pyrose-
quencing. The melanoma patients exhibited low methylation
levels for CDKN2A, similar to the pattern already reported
for healthy individuals [23]. Our data in this Brazilian cohort
of patients are in accordance with previous studies that
described absence of CDKN2A epimutation in hereditary
melanoma patients [20, 21].

5. Conclusion

Here we investigated the potential role of twelve melanoma-
associated genes as predisposition factors and epigenetic
biomarkers for melanoma, using both peripheral blood and
tumor samples.We did not find germlineCDKN2A hyperme-
thylation in our cohort of Brazilianmelanoma patients. How-
ever, we detected low-level albeit significant DNA methy-
lation differences in a gene subset both in leukocytes and
in tumors (BAP1, KIT, MGMT, MITF, PALB2, POT1, TERT,
and TNF). Additional studies in a large melanoma cohort
are necessary to validate these candidate genes as epigenetic
biomarkers in melanoma.
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tions in CDKN2A in western Swedish families with hereditary
malignant melanoma,”Molecular Medicine Reports, vol. 1, no. 1,
pp. 89–91, 2008.

[21] R. van Doorn, W. H. Zoutman, and N. A. Gruis, “Absence
of germline epimutation of the CDKN2A gene in familial
melanoma,” Journal of Investigative Dermatology, vol. 129, no.
3, pp. 781–784, 2009.

[22] L. Pergoli, C. Favero, R. M. Pfeiffer et al., “Blood DNA methy-
lation, nevi number, and the risk of melanoma,” Melanoma
Research, vol. 24, no. 5, pp. 480–487, 2014.

[23] P. L. Hyland, L. S. Burke, R. M. Pfeiffer et al., “Constitutional
promotermethylation and risk of familial melanoma,”Epigenet-
ics, vol. 9, no. 5, pp. 685–692, 2014.

[24] S. Ecsedi, H. Hernandez-Vargas, S. C. Lima et al., “DNA
methylation characteristics of primarymelanomaswith distinct
biological behaviour,”PLoSONE, vol. 9, no. 5, Article ID e96612,
2014.

[25] C. Dahl, C. Abildgaard, R. Riber-Hansen, T. Steiniche, J. Lade-
Keller, and P. Guldberg, “KIT is a frequent target for epigenetic
silencing in cutaneous melanoma,” Journal of Investigative
Dermatology, vol. 135, no. 2, pp. 516–524, 2014.

[26] Y. Isabel Zhu and J. E. Fitzpatrick, “Expression of c-kit (CD117)
in Spitz nevus and malignant melanoma,” Journal of Cutaneous
Pathology, vol. 33, no. 1, pp. 33–37, 2006.
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