99 research outputs found

    HE4 in the differential diagnosis of ovarian masses

    Get PDF
    Ovarian masses, a common finding among pre- and post-menopausal women, can be benign or malignant. Ovarian cancer is the leading cause of death from gynecologic malignancy among women living in industrialized countries. According to the current guidelines, measurement of CA125 tumor marker remains the gold standard in the management of ovarian cancer. Recently, HE4 has been proposed as emerging biomarker in the differential diagnosis of adnexal masses and in the early diagnosis of ovarian cancer. Discrimination of benign and malignant ovarian tumors is very important for correct patient referral to institutions specializing in care and management of ovarian cancer. Tumor markers CA125 and HE4 are currently incorporated into the Risk of Ovarian Malignancy Algorithm” (ROMA) with menopausal status for discerning malignant from benign pelvic masses. The availability of a good biomarker such as HE4, closely associated with the differential and early diagnosis of ovarian cancer, could reduce medical costs related to more expensive diagnostic procedures. Finally, it is important to note that HE4 identifies platinum non-responders thus enabling a switch to second line chemotherapy and improved survival

    Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees

    Get PDF
    These days, most of our attention has been focused on the COVID‐19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fas‐ tidiosa re‐emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifi‐ cally caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South‐East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively re‐ shaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidi‐ azuron (TDZ), a diphenylurea (N‐phenyl‐1,2,3‐thiadiazol‐5‐yl urea), has gained considerable atten‐ tion in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low‐cost compound to fight OQDS may be an intriguing ide

    Augmented Reality, Virtual Reality and Artificial Intelligence in Orthopedic Surgery: A Systematic Review

    Get PDF
    Background: The application of virtual and augmented reality technologies to orthopaedic surgery training and practice aims to increase the safety and accuracy of procedures and reducing complications and costs. The purpose of this systematic review is to summarise the present literature on this topic while providing a detailed analysis of current flaws and benefits. Methods: A comprehensive search on the PubMed, Cochrane, CINAHL, and Embase database was conducted from inception to February 2021. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies (MINORS) was used to assess the quality and potential bias of the included randomized and non-randomized control trials, respectively. Results: Virtual reality has been proven revolutionary for both resident training and preoperative planning. Thanks to augmented reality, orthopaedic surgeons could carry out procedures faster and more accurately, improving overall safety. Artificial intelligence (AI) is a promising technology with limitless potential, but, nowadays, its use in orthopaedic surgery is limited to preoperative diagnosis. Conclusions: Extended reality technologies have the potential to reform orthopaedic training and practice, providing an opportunity for unidirectional growth towards a patient-centred approach

    Investigation on MMACHC-R161Q pathological mutant from cblC disease

    Get PDF
    The cblC disease is a rare inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by combined methylmalonic aciduria and homocystinuria. The clinical consequences are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The molecular genetic cause of the disease was found in the mutations of the gene coding for MMACHC, a 282 amino acid protein that transports and processes the various forms of Cbl. Here we present the biophysical characterization of wild type MMACHC and a variant, p.R161Q, resulting from the most common missense pathological mutation found in cblC patients. By using a biophysical approach we investigated the stability of the two proteins and their ability to bind and transform the vitamin B12, and to assemble in a dimeric structure. Moreover, interesting indications about the behaviour of the proteins resulted from the Molecular Dynamics (MD) simulations. Overall, our results reveal how a biophysical approach based on the complementarity of computational and experimental methods can offer new insights in the study of the specific effects of the pathological cblC mutation and help prospecting new routes for the cblC treatment

    Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy

    Get PDF
    The relationship, during physical aging, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) was investigated using pure gas permeability and atomic force microscopy (AFM) in force spectroscopy mode. Excellent agreement of Young’s modulus measured for the archetypal PIM-1 with values obtained by other techniques in the literature, confirms the suitability of AFM force spectroscopy for the rapid and convenient assessment of mechanical properties. Results from different polymers including PIM-1 and five ultrapermeable benzotriptycene-based PIMs provide direct evidence that size selectivity is strongly correlated to Young’s modulus. In addition, film samples of one representative PIM (PIM-DTFM-BTrip) were subjected to both normal physical aging and to accelerated aging by thermal conditioning under vacuum for comparison. Accelerated aging resulted in a similar decrease in permeability and increase in Young’s modulus as normal aging, however, significant differences suggest that thermally induced accelerated aging occurs throughout the bulk of the polymer film whereas normal aging occurs predominantly at the surface of the film. For all PIMs, the increased in film rigidity upon aging led to an increase in gas size selectivity

    Space Applications of the Geant4 Simulation Toolkit

    Get PDF
    The space radiation environment is highly variable and dynamic. With the increasing number and complexity of space missions, the detailed analysis of the effects of that environment often requires the use of advanced Monte Carlo radiation transport tools. In this presentation, various space-oriented developments and applications based on the Geant4 particle transport toolkit are described
    • 

    corecore