86 research outputs found

    TSSK3, a novel target for male contraception, is required for spermiogenesis

    Get PDF
    We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO. The aim of this study was to develop KO mouse models of TSSK3 and to validate this kinase as a target for the development of a male contraceptive. We used CRISPR/Cas9 technology to generate the TSSK3 KO allele on B6D2F1 background mice. Male heterozygous pups were used to establish three independent TSSK3 KO lines. After natural mating of TSSK3 KO males, females that presented a plug (indicative of mating) were monitored for the following 24 days and no pregnancies or pups were found. Sperm numbers were drastically reduced in all three KO lines and, remarkably, round spermatids were detected in the cauda epididymis of KO mice. From the small population of sperm recovered, severe morphology defects were detected. Our results indicate an essential role of TSSK3 in spermiogenesis and support this kinase as a suitable candidate for the development of novel nonhormonal male contraceptives.Fil: Nayyab, Saman. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Caraballo, Diego Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Jha, Kula N.. No especifíca;Fil: Teves, Maria E.. University of Virginia; Estados UnidosFil: Cui, Wei. University of Massachussets; Estados UnidosFil: Georg, Gunda I.. University of Minnesota; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados Unido

    Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis

    Get PDF
    Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.Fil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velasco Félix, Ángel G.. Universidad Nacional Autónoma de México; MéxicoFil: Rodriguez, Paulina Torres. Universidad Nacional Autónoma de México; MéxicoFil: Gervasi, Mar?á G.. University Of Massachusetts Amherst;Fil: Xu, Xinran. School Of Biomedical Engineering;Fil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Contreras-Jiménez, Gastón. Universidad Nacional Autónoma de México; MéxicoFil: Sánchez-Cárdenas, Claudia. Universidad Nacional Autónoma de México; MéxicoFil: Ramírez-Gómez, Héctor V.. Universidad Nacional Autónoma de México; MéxicoFil: Krapf, Diego. School Of Biomedical Engineering;Fil: Visconti, Pablo E.. University Of Massachusetts Amherst;Fil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Guerrero, Adán. Universidad Nacional Autónoma de México; MéxicoFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Hypercholesterolemia Impaired Sperm Functionality in Rabbits

    Get PDF
    Hypercholesterolemia represents a high risk factor for frequent diseases and it has also been associated with poor semen quality that may lead to male infertility. The aim of this study was to analyze semen and sperm function in diet-induced hypercholesterolemic rabbits. Twelve adult White New Zealand male rabbits were fed ad libitum a control diet or a diet supplemented with 0.05% cholesterol. Rabbits under cholesterol-enriched diet significantly increased total cholesterol level in the serum. Semen examination revealed a significant reduction in semen volume and sperm motility in hypercholesterolemic rabbits (HCR). Sperm cell morphology was seriously affected, displaying primarily a “folded head”-head fold along the major axe-, and the presence of cytoplasmic droplet on sperm flagellum. Cholesterol was particularly increased in acrosomal region when detected by filipin probe. The rise in cholesterol concentration in sperm cells was determined quantitatively by Gas chromatographic-mass spectrometric analyses. We also found a reduction of protein tyrosine phosphorylation in sperm incubated under capacitating conditions from HCR. Interestingly, the addition of Protein Kinase A pathway activators -dibutyryl-cyclic AMP and iso-butylmethylxanthine- to the medium restored sperm capacitation. Finally, it was also reported a significant decrease in the percentage of reacted sperm in the presence of progesterone. In conclusion, our data showed that diet-induced hypercholesterolemia adversely affects semen quality and sperm motility, capacitation and acrosomal reaction in rabbits; probably due to an increase in cellular cholesterol content that alters membrane related events

    TLR4 expression in ex-Lichenoid lesions—oral squamous cell carcinomas and its surrounding epithelium: the role of tumor inflammatory microenvironment

    Get PDF
    Abstract: Toll-like receptors (TLRs) regulate innate and adaptive immune responses. Moreover, TLRs can induce a pro-survival and pro-proliferation response in tumor cells. This study aims to investigate the expression of TLR4 in the epithelium surrounding oral squamous cell carcinomas (OSCC) in relation to its inflammatory microenvironment. This study included 150 human samples: 30 normal oral control (NOC), 38 non-lichenoid epithelium surrounding OSCC (NLE-OSCC), 28 lichenoid epithelium surrounding OSCC (LE-OSCC), 30 OSCC ex-non oral lichenoid lesion (OSCC Ex-NOLL), and 24 OSCC ex-oral lichenoid lesion (OSCC Ex-OLL). TLR4 expression was investigated by immuno histochemistry and the percentage of positive cells was quantified. In addition, a semiquantitative analysis of staining intensity was performed. Immunohistochemical analysis revealed that TLR4 is strongly upregulated in LE-OSCC as compared to normal control epithelium and NLE-OSCC. TLR4 expression was associated with the inflammatory environment, since the percentage of positive cells increases from NOC and NLE-OSCC to LE-OSCC, reaching the highest value in OSCC Ex–OLL. TLR4 was detected in the basal third of the epithelium in NLE-OSCC, while in LE-OSCC, TLR4 expression reached the intermediate layer. These results demonstrated that an inflammatory microenvironment can upregulate TLR4, which may boost tumor development

    Cdc42 localized in the CatSper signaling complex regulates cAMP‐dependent pathways in mouse sperm

    Get PDF
    Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+-dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.Fil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Xu, Xinran. State University of Colorado - Fort Collins; Estados UnidosFil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. State University of Colorado - Fort Collins; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Orta, Gerardo. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: De la Vega Beltrán, José L.. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: Stival, Cintia Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gilio, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: D'alotto Moreno, Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Krapf, Diego. State University of Colorado - Fort Collins; Estados UnidosFil: Darszon, Alberto. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Transient Sperm Starvation Improves the Outcome of Assisted Reproductive Technologies

    Get PDF
    To become fertile, mammalian sperm must undergo a series of biochemical and physiological changes known as capacitation. These changes involve crosstalk between metabolic and signaling pathways and can be recapitulated in vitro. In this work, sperm were incubated in the absence of exogenous nutrients (starved) until they were no longer able to move. Once immotile, energy substrates were added back to the media and sperm motility was rescued. Following rescue, a significantly higher percentage of starved sperm attained hyperactivated motility and displayed increased ability to fertilize in vitro when compared with sperm persistently incubated in standard capacitation media. Remarkably, the effects of this treatment continue beyond fertilization as starved and rescued sperm promoted higher rates of embryo development, and once transferred to pseudo-pregnant females, blastocysts derived from treated sperm produced significantly more pups. In addition, the starvation and rescue protocol increased fertilization and embryo development rates in sperm from a severely subfertile mouse model, and when combined with temporal increase in Ca2+ ion levels, this methodology significantly improved fertilization and embryo development rates in sperm of sterile CatSper1 KO mice model. Intracytoplasmic sperm injection (ICSI) does not work in the agriculturally relevant bovine system. Here, we show that transient nutrient starvation of bovine sperm significantly enhanced ICSI success in this species. These data reveal that the conditions under which sperm are treated impact postfertilization development and suggest that this “starvation and rescue method” can be used to improve assisted reproductive technologies (ARTs) in other mammalian species, including humans.Fil: Navarrete, Felipe A.. University of Massachussets; Estados UnidosFil: Aguila, Luis. University of Massachussets; Estados UnidosFil: Martin Hidalgo, David. University of Massachussets; Estados Unidos. Universidad de Extremadura ; EspañaFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Ardestani, Goli. University of Massachussets; Estados UnidosFil: Garcia Vazquez, Francisco A.. Universidad de Murcia; EspañaFil: Levin, Lonny R.. Cornell University; Estados UnidosFil: Buck, Jochen. Cornell University; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México. Instituto de Biología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mager, Jesse. University of Massachussets; Estados UnidosFil: Fissore, Rafael A.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados Unido

    Role of continuous glucose monitoring in diabetic patients at high cardiovascular risk. an expert-based multidisciplinary delphi consensus

    Get PDF
    Background: Continuous glucose monitoring (CGM) shows in more detail the glycaemic pattern of diabetic subjects and provides several new parameters (“glucometrics”) to assess patients’ glycaemia and consensually guide treatment. A better control of glucose levels might result in improvement of clinical outcome and reduce disease complications. This study aimed to gather an expert consensus on the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk or with heart disease. Methods: A list of 22 statements concerning type of patients who can benefit from CGM, prognostic impact of CGM in diabetic patients with heart disease, CGM use during acute cardiovascular events and educational issues of CGM were developed. Using a two-round Delphi methodology, the survey was distributed online to 42 Italian experts (21 diabetologists and 21 cardiologists) who rated their level of agreement with each statement on a 5-point Likert scale. Consensus was predefined as more than 66% of the panel agreeing/disagreeing with any given statement. Results: Forty experts (95%) answered the survey. Every statement achieved a positive consensus. In particular, the panel expressed the feeling that CGM can be prognostically relevant for every diabetic patient (70%) and that is clinically useful also in the management of those with type 2 diabetes not treated with insulin (87.5%). The assessment of time in range (TIR), glycaemic variability (GV) and hypoglycaemic/hyperglycaemic episodes were considered relevant in the management of diabetic patients with heart disease (92.5% for TIR, 95% for GV, 97.5% for time spent in hypoglycaemia) and can improve the prognosis of those with ischaemic heart disease (100% for hypoglycaemia, 90% for hyperglycaemia) or with heart failure (87.5% for hypoglycaemia, 85% for TIR, 87.5% for GV). The experts retained that CGM can be used and can impact the short- and long-term prognosis during an acute cardiovascular event. Lastly, CGM has a recognized educational role for diabetic subjects. Conclusions: According to this Delphi consensus, the clinical and prognostic use of CGM in diabetic patients at high cardiovascular risk is promising and deserves dedicated studies to confirm the experts’ feeling
    corecore