4 research outputs found

    Kinase-Independent Functions of MASTL in Cancer: A New Perspective on MASTL Targeting

    Get PDF
    Microtubule-associated serine/threonine kinase-like (MASTL; Greatwall) is a well-characterized kinase, whose catalytic role has been extensively studied in relation to cell-cycle acceleration. Importantly, MASTL has been implicated to play a substantial role in cancer progression and subsequent studies have shown that MASTL is a significant regulator of the cellular actomyosin cytoskeleton. Several kinases have non-catalytic properties, which are essential or even sufficient for their functions. Likewise, MASTL functions have been attributed both to kinase-dependent phosphorylation of downstream substrates, but also to kinase-independent regulation of the actomyosin contractile machinery. In this review, we aimed to highlight the catalytic and non-catalytic roles of MASTL in proliferation, migration, and invasion. Further, we discussed the implications of this dual role for therapeutic design. </p

    MASTL promotes cell contractility and motility through kinase-independent signaling

    Get PDF
    Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity

    MASTL promotes cell contractility and motility through kinase-independent signaling

    Get PDF
    Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity. [Abstract copyright: © 2020 Taskinen et al.
    corecore