32 research outputs found

    Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal plasticity is initiated by transient elevations of neuronal networks activity leading to changes of synaptic properties and providing the basis for memory and learning <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. An increase of electrical activity can be caused by electrical stimulation <abbrgrp><abbr bid="B2">2</abbr></abbrgrp> or by pharmacological manipulations: elevation of extracellular K<sup>+ </sup><abbrgrp><abbr bid="B3">3</abbr></abbrgrp>, blockage of inhibitory pathways <abbrgrp><abbr bid="B4">4</abbr></abbrgrp> or by an increase of second messengers intracellular concentrations <abbrgrp><abbr bid="B5">5</abbr></abbrgrp>. Neuronal plasticity is mediated by several biochemical pathways leading to the modulation of synaptic strength, density of ionic channels and morphological changes of neuronal arborisation <abbrgrp><abbr bid="B6">6</abbr></abbrgrp>. On a time scale of a few minutes, neuronal plasticity is mediated by local protein trafficking <abbrgrp><abbr bid="B7">7</abbr></abbrgrp> while, in order to sustain modifications beyond 2–3 h, changes of gene expression are required <abbrgrp><abbr bid="B8">8</abbr></abbrgrp>.</p> <p>Findings</p> <p>In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABA<sub>A </sub>receptor antagonist gabazine (GabT) causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors.</p> <p>Conclusion</p> <p>These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.</p

    Bone regeneration with adipose derived stem cells in a rabbit model

    Get PDF
    It has been shown that stem cells are able to calcify both in vitro and in vivo once implanted under the skin, if conveniently differentiated. Nowadays, however, a study on their efficiency in osseous regeneration does not exist in scientific literature and this very task is the real aim of the present experimentation. Five different defects of 6 mm in diameter and 2 mm in depth were created in the calvaria of 8 white New Zealand rabbits. Four defects were regenerated using 2 different conveniently modified scaffolds (Bio-Oss\uae Block and Bio-Oss Collagen\uae, Geistlich), with and without the aid of stem cells. After the insertion, the part was covered with a collagen membrane fixed by 5 modified titan pins (Altapin\uae). The defect in the front was left empty on purpose as an internal control to each animal. Two animals were sacrificed respectively after 2, 4, 6, 10 weeks. The samples were evaluated with micro-CT and histological analysis. Micro-CT analysis revealed that the quantity of new bone for samples with Bio-Oss\uae Block and stem cells was higher than for samples with Bio-Oss\uae Block alone. Histological analysis showed that regeneration occurred in an optimal way in every sample treated with scaffolds. The findings indicated that the use of adult stem cells combined with scaffolds accelerated some steps in normal osseous regeneration

    Semaphorin-7A on Exosomes: A Promigratory Signal in the Glioma Microenvironment

    Get PDF
    Exosomes are one of the most important mediators of the cross talk occurring between glioma stem cells (GSCs) and the surrounding microenvironment. We have previously shown that exosomes released by patient-derived glioma-associated stem cells (GASC) are able to increase, in vitro, the aggressiveness of both GSC and glioblastoma cell lines. To understand which molecules are responsible for this tumour-supporting function, we performed a descriptive proteomic analysis of GASC-exosomes and identified, among the others, Semaphorin7A (SEMA7A). SEMA7A was described as a promigratory cue in physiological and pathological conditions, and we hypothesised that it could modulate GSC migratory properties. Here, we described that SEMA7A is exposed on GASC-exosomes' surface and signals to GSC through Integrin \u3b21. This interaction activates focal adhesion kinase into GSC and increases their motility, in our patient-based in vitro model. Our findings suggest SEMA7A-\u3b21-integrin as a new target to disrupt the communication between GSCs and the supporting microenvironment

    Glioma-associated stem cells: A novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas.

    Get PDF
    Background: Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. Methods and Findings: We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. Conclusions: The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma

    On the Dynamics of the Spontaneous Activity in Neuronal Networks

    Get PDF
    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABA(A) receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking

    Burst statistics.

    No full text
    <p>Probability distributions of burst size and duration computed according to 3 different burst definitions. Data from representative experiments obtained in leech (reddish lines) and hippocampal networks (bluish lines). Bursts size (on the left) and duration (on the right) distributions are calculated according to definition 1 (A, B), definition 2 (C, D), and definition 3 (E, F). Black dashed lines are power laws with a slope of −1.5 in the left column and −2 in the right column. Note the power law behavior of bursts size distribution of hippocampal networks for 3 log units.</p

    Bursts statistics in the presence of synaptic blockers.

    No full text
    <p>Bursts size and duration distributions for leech (reddish lines) and hippocampal (bluish lines) networks obtained using burst definition 1. (A–B) In the presence of APV, the number of large bursts decreased. The black dashed line has a slope of −1.5 in (A) and of −2 in (B), as in the right and left column of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000439#pone-0000439-g009" target="_blank">Figure 9</a>, respectively. (C–D) In the presence of GABA<sub>A</sub> receptor blockers (PTX/bicuculline), peaks corresponding to large bursts appeared (indicated by the arrows). Traces were shifted to superimpose peaks of each preparation. In hippocampal networks, intermediate size bursts are absent as shown by the discontinuity of the distributions.</p

    Effects of synaptic blockers on network correlation.

    No full text
    <p>(A–B) Network correlation coefficient rate in leech (A) and hippocampal (B) networks in the different pharmacological conditions considered. (C–D) Spikes per bin distribution of the network firing rate in leech (C) and hippocampal (D) networks. Data were fitted by a lognormal function in normal conditions (grey symbols). In the presence of 20 µM APV (blue symbols) data were fitted by a Poisson distribution for the leech network and by a lognormal distribution for the hippocampal network. Note the reduction of skewness in the presence of APV in both preparations (see text). Red symbols correspond to spike per bin distribution in the presence of 10 µM PTX (C) and bicuculline (D). (E–F) PSD of the network firing rate in control (black trace), in the presence of APV (blue trace), PTX (E, red trace) or bicuculline (F, red trace). Black dashed lines have 1/f slope.</p
    corecore