76 research outputs found

    Energy absorbing 4D printed meta-sandwich structures:load cycles and shape recovery

    Get PDF
    The present study investigates the behavior of solid cellular structures in polylactic acid (PLA) achieved by FDM technology (fusion deposition modelling). The geometries are permanently deformed by compressive stress and then subjected to shape recovery through the application of a thermal stimulus. The structures are submitted to medium–high and medium–low compression stresses, evaluating the mechanical properties and the absorption energy as the number of cycles varies. The study shows that the ability to absorb energy is related to the density of the model, as well as the degree of damage observed, which increases with increasing number of load cycles. The strongest geometry is the lozenge grid, which is the most reliable. It shows no damage with increasing compression cycles and keeps its capability to absorb energy almost constant. The increase in lozenge grid density leads to an improvement in both mechanical strength and absorption energy, as well as a lower incidence of microcracks in the geometry itself due to the repeated load cycles. These results open up a broad spectrum of applications of custom-designed solid cellular structures in the field of energy absorption and damping

    Selective and sensitive poly-<i>ortho</i>-phenylenediamine-shielded microsensore and biosensors for in vivo neurochemical monitoring

    Get PDF
    Different methodologies are being developed, such as imaging, spectroscopy and electrochemistry, to study neurochemical dynamics in cell cultures or in intact brain [1-2]. One of these techniques involves the in-situ detection of biologically active molecules, including nitric oxide (NO) [3], glucose [4], glutamate (GLUT) [5-6] and lactate [1,7], in brain extracellular fluid (ECF), using implanted microsensors and biosensors. NO is a water-soluble free radical that readily diffuses through membranes and its actions in the CNS are largely studied

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes.

    Get PDF
    Swiss mice were given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 25 mg/kg/day, for 5 consecutive days and killed at different days after MPTP discontinuance. Decreases in striatal tyrosine hydroxylase activity and levels of dopamine and its metabolites were observed 1 day after MPTP discontinuance. Ascorbic acid and glutamate levels had increased, dehydroascorbic acid and GSH decreased, whereas catabolites of high-energy phosphates (inosine, hypoxanthine, xanthine, and uric acid) were unchanged. In addition, gliosis was observed in both striatum and substantia nigra compacta (SNc). Sections of SNc showed some terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)-positive cells. Neurochemical parameters of dopaminergic activity showed a trend toward recovery 3 days after MPTP discontinuance. At this time point, TUNEL-positive cells were detected in SNc; some of them showed nuclei with neuronal morphology. A late (days 6-11) increase in striatal dopamine oxidative metabolism, ascorbic acid oxidative status, and catabolites of high-energy phosphates were observed concomitant with nigral neuron and nigrostriatal glial cell apoptotic death, as revealed by TUNEL, acridine orange, and Hoechst staining, and transmission electron microscopy. These data suggest that MPTP-induced activation/apoptotic death of glial cells plays a key role in the sequential linkage of neurochemical and cellular events leading to dopaminergic nigral neuron apoptotic death

    Real-Time Monitoring of Brain Tissue Oxygen Using a Miniaturized Biotelemetric Device Implanted in Freely Moving Rats

    Get PDF
    A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors

    One or two doses of live varicella virus-containing vaccines: Efficacy, persistence of immune responses, and safety six years after administration in healthy children during their second year of life

    Get PDF
    Abstract Background This phase III B follow-up of an initial multicenter study (NCT00226499) will evaluate the ten-year efficacy of two doses of the combined measles-mumps-rubella-varicella vaccine (MMRV) and one dose of the live attenuated varicella vaccine (V) versus a measles-mumps-rubella control group (MMR) for the prevention of clinical varicella disease. Here we present efficacy results for six years post-vaccination. Methods In phase A of the study, healthy children aged 12–22 months from ten European countries were randomized (3:3:1) and received either two doses of MMRV, or one dose of combined MMR and one dose of monovalent varicella vaccine (MMR+V), or two doses of the MMR vaccine (control), 42 days apart. Vaccine efficacy against all and against moderate or severe varicella (confirmed by detection of viral DNA or epidemiological link) was assessed from six weeks up to six years post-dose 2 for the MMRV and MMR+V groups, and was calculated with 95% confidence intervals (CI). The severity of varicella was calculated using the modified Vazquez scale (mild ≤ 7; moderately severe = 8–15; severe ≥ 16). Herpes zoster cases were also recorded. Results 5289 children (MMRV = 2279, mean age = 14.2, standard deviation [SD] = 2.5; MMR+V = 2266, mean age = 14.2, SD = 2.4; MMR = 744, mean age = 14.2, SD = 2.5 months) were included in the efficacy cohort. 815 varicella cases were confirmed. Efficacy of two doses of MMRV against all and against moderate or severe varicella was 95.0% (95% CI: 93.6–96.2) and 99.0% (95% CI: 97.7–99.6), respectively. Efficacy of one dose of varicella vaccine against all and against moderate or severe varicella was 67.0% (95% CI: 61.8–71.4) and 90.3% (95% CI: 86.9–92.8), respectively. There were four confirmed herpes zoster cases (MMR+V = 2, MMR = 2), all were mild and three tested positive for the wild-type virus. Conclusions Two doses of the MMRV vaccine and one dose of the varicella vaccine remain efficacious through six years post-vaccination

    Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors

    Get PDF
    In this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O2 and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-to-voltage converter, a microcontroller and a miniaturized data transmitter. The redox currents were digitized to digital values by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC), and sent to a personal computer by means of a miniaturized AM transmitter. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption and good linear response in the nanoampere current range. The in-vivo results confirmed previously published observations on striatal AA, oxygen and glucose dynamics recorded in tethered rats. This approach, based on simple and inexpensive components, could be used as a rapid and reliable model for studying the effects of different drugs on brain neurochemical systems

    Evaluation of wave configurations in corrugated boards by experimental analysis (EA) and finite element modeling (FEM): the role of the micro-wave in packaging design

    Get PDF
    : The aim of this paper is to study the mechanical behavior of corrugated board boxes, focusing attention on the strength that the boxes are able to offer in compression under stacking conditions. A preliminary design of the corrugated cardboard structures starting from the definition of each individual layer, namely the outer liners and the innermost flute, was carried out. For this purpose, three distinct types of corrugated board structures that include flutes with different characteristics, namely the high wave (C), the medium wave (B), and even the micro-wave (E), were comparatively evaluated. More specifically, the comparison is able to show the potential of the micro-wave which would eventually allow a significant saving of cellulose in the fabrication process of the boxes, thus reducing the manufacturing costs and causing a lower environmental footprint. First, experimental tests were carried out to determine the mechanical properties of the different layers of the corrugated board structures. Tensile tests were performed on samples extracted from the paper reels used as base material for the manufacturing of the liners and flutes. Instead, the edge crush test (ECT) and box compression test (BCT) were directly performed on the corrugated cardboard structures. Secondly, a parametric finite element (FE) model to allow, on a comparative basis, the study of the mechanical response of the three different types of corrugated cardboard structures was developed. Lastly, a comparison between the available experimental results and the outputs of the FE model was carried out, with the same model being also adapted to evaluate additional structures where the E micro-wave was usefully combined with the B or C wave in a double-wave configuration

    Manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role both in the neurotoxin MPTP- and manganese (Mn)-induced neurotoxicity and in apoptotic cell death. In the present study, we report that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion (at concentrations of 0.5 and 1.0 mM), induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Both Mn and 2′Et-MPTP induced also a time-dependent decrease in cell viability, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Only Mn-induced apoptosis and decrease in cell viability were inhibited by the antioxidant ascorbic acid. We conclude that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized only in the Mn-induced apoptosis

    Role of oxidative stress in the manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role in the apoptotic death of several cellular systems, including neurons. Oxidative stress is proposed also as a mechanism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and manganese (Mn)-induced neuronal death. We have recently shown that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion, induce apoptosis in PC12 cells. In the present study, we evaluated the effects of deprenyl and the antioxidant drugs N-acetylcysteine (NAC) and ascorbic acid (AA) on Mn- and 2′Et-MPTP-induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxy-uridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mn-induced apoptosis and decrease in cell viability was inhibited by the antioxidants NAC and AA. Deprenyl failed to inhibit the above Mn effects. Neither NAC, AA nor deprenyl were able to inhibit both 2′Et-MPTP-induced apoptosis and decrease in cell viability. These results confirm that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized, at least in vitro, only in the Mn-induced apoptosis
    • …
    corecore