11 research outputs found

    Biological significance of soluble IL-2 receptor

    Get PDF
    A NUMBER of receptors for growth factors and differentiation antigens have been found to be secreted or released by cells. Following mononuclear cell (MNC) activation and interleukin-2 receptor (IL-2R) expression, a soluble form of the Alpha;-chain of IL-2R (sIL-2R) is released. The sIL-2R has been shown to be present in the culture supernatants of activated MNCs as well as in normal sera and, in higher amounts, in sera from subjects affected by several diseases including neoplastic, infectious and autoimmune ones, and in sera from transplanted patients suffering allograft rejection. The blood sIL-2R levels depend on the number of producing cells and the number of molecules per cell, so that sIL-2R blood values may represent an index of the number and the functional state of producing cells, both normal and neoplastic. Thus, monitoring of the immune system, mostly T-cells and haematological malignancies might be targets for the measurement of sIL-2R. Since many conditions may influence sIL-2R production, little diagnostic use may result from these measurements. However, since blood sIL-2R levels may correlate with disease progression and/or response to therapy, their measurement may be a useful index of activity and extent of disease. The precise biological role of the soluble form of the IL-2R is still a matter of debate. However, we know that increased sIL-2R levels may be observed in association with several immunological abnormalities and that sIL-2R is able to bind IL-2. It is conceivable then that in these conditions the excess sIL-2R released in vivo by activated lymphoid cells or by neoplastic cells may somehow regulate IL-2-dependent processes. On the other hand, it cannot exclude that sIL-2R is a by-product without biological significance. Finally, it is puzzling that in many conditions in which an increase of blood sIL-2R values has been observed, MNCs display a decreased in vitro capacity to produce sIL-2R. These seemingly contrasting findings are discussed in the light of the data showing that sIL-2R production correlates with IL-2 production

    COVID-19 atypical Parsonage-Turner syndrome: a case report

    Get PDF
    Background Neurological manifestations of Sars-CoV-2 infection have been described since March 2020 and include both central and peripheral nervous system manifestations. Neurological symptoms, such as headache or persistent loss of smell and taste, have also been documented in COVID-19 long-haulers. Moreover, long lasting fatigue, mild cognitive impairment and sleep disorders appear to be frequent long term neurological manifestations after hospitalization due to COVID-19. Less is known in relation to peripheral nerve injury related to Sars-CoV-2 infection. Case presentation We report the case of a 47-year-old female presenting with a unilateral chest pain radiating to the left arm lasting for more than two months after recovery from Sars-CoV-2 infection. After referral to our post-acute outpatient service for COVID-19 long haulers, she was diagnosed with a unilateral, atypical, pure sensory brachial plexus neuritis potentially related to COVID-19, which occurred during the acute phase of a mild Sars-CoV-2 infection and persisted for months after resolution of the infection. Conclusions We presented a case of atypical Parsonage-Turner syndrome potentially triggered by Sars-CoV-2 infection, with symptoms and repercussion lasting after viral clearance. A direct involvement of the virus remains uncertain, and the physiopathology is unclear. The treatment of COVID-19 and its long-term consequences represents a relatively new challenge for clinicians and health care providers. A multidisciplinary approach to following-up COVID-19 survivors is strongly advised

    Residual respiratory impairment after COVID-19 pneumonia

    No full text
    Introduction: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. Method: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). Results: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. Conclusion: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization

    Psychological Distress After Covid-19 Recovery: Reciprocal Effects With Temperament and Emotional Dysregulation. An Exploratory Study of Patients Over 60 Years of Age Assessed in a Post-acute Care Service

    No full text
    To study the long-term psychological effects of Covid-19 disease, we recruited 61 patients older than 60 years of age and administered the Kessler questionnaire K10 to assess psychological distress and classify them according to mental health risk groups. Patients' affective temperaments were assessed with the 39-item form of the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego (TEMPS-A-39) and emotional dysregulation with the Difficulties in Emotion Regulation Scale (DERS). Patients were divided in two samples according to their scores on the K10, i.e., a high likelihood of psychological distress group (N = 18) and a low likelihood of psychological distress group (N = 43). The two groups differed on their gender composition, in that more women (N = 11) were in the former and more men in the latter (N = 29) (χ2 = 4.28; p = 0.039). The high likelihood of psychological distress group scored higher on the Cyclothymic (3.39 ± 3.45 vs. 0.93 ± 1.08, p < 0.001) and the Depressive (2.28 ± 2.82 vs. 0.65 ± 1.09, p = 0.01) affective temperaments of the TEMPS and on the lack of Impulse control (12.67 ± 4.04 vs. 9.63 ± 3.14, p = 0.003) and lack of Clarity (15.00 ± 5.56 vs. 9.85 ± 4.67, p = 0.004) scales of the DERS. Our results show that having had Covid-19 may be related with high likelihood for psychological distress in advanced-age people and this may in turn be associated with impaired emotional regulation and higher scores on depressive and cyclothymic temperaments

    Residual respiratory impairment after COVID-19 pneumonia

    No full text
    Abstract Introduction: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. Method: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). Results: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. Conclusion: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization

    Residual respiratory impairment after COVID-19 pneumonia

    No full text
    Introduction: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. Method: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). Results: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. Conclusion: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part three

    No full text
    corecore