46 research outputs found
Neuroprotective Effects of the Nutraceutical Dehydrozingerone and Its C2-Symmetric Dimer in a Drosophila Model of Parkinson’s Disease
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons responsible for unintended or uncontrollable movements. Mutations in the leucine-rich repeat kinase 2 locus contribute to genetic forms of PD. The fruit fly Drosophila melanogaster carrying this mutation (LRRK2-Dm) is an in vivo model of PD that develops motor impairment and stands for an eligible non-mammalian paradigm to test novel therapeutic approaches. Dehydrozingerone (DHZ) is a natural phenolic compound isolated from ginger and presents anti-inflammatory, antioxidant and neuroprotective properties, making it a potential therapeutic target for PD. We administered DHZ and its C2-symmetric dimer (DHZ-DIM) at 0.5 and 1 mM for 14 and 21 days in the LRRK2-Dm, with the aim of assessing changes in rescuing motor behavior, brain dopaminergic neurons, mitochondria and synapses (T-bars). The shorter treatment with both molecules revealed efficacy at the higher dose, improving climbing behavior with a prevention of dopaminergic neuronal demise. After 21 days, a recovery of the motor disability, dopaminergic neuron loss, mitochondrial damage and T-bars failure was observed with the DHZ-DIM. Our data indicate that the DHZ-DIM exerts a more potent neuroprotective effect with respect to the monomer in LRRK2-Dm, prompting further investigation of these compounds in rodent models of PD
Recommended from our members
Modeling Parkinson's Disease Neuropathology and Symptoms by Intranigral Inoculation of Preformed Human α-Synuclein Oligomers.
The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson's disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies
SRT performance measurements (2018-2021)
Tests of characterization are periodically performed at SRT in order to check the status of the antenna, ensure a good functioning of the different components (e.g. active surface, receivers, backends, etc), and improve the observing performances at the different frequencies. In particular, the tests include measurements of beam shape, pointing, gain curves and focus for the different receivers (L, C, X and K-bands).
We report the results of the main tests carried out after a long stop of the antenna due to the reparation of the main servo motors chillers in 2020 and compare them with those carried out during the recommissioning in 2018 (after the change of the actuators of the active surface).
These results will be useful in order to compare the new status of the antenna after the upgrade of the new receivers at higher frequency (PON)
Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study
Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality
Age-related changes in structural and functional relationship between presynaptic terminals and layer y pyramidal neurons in the rat cerebral cortex
Dottorato di ricerca in neuroscienze. 10. ciclo. A.a. 1994-99. Coordinatore e supervisore Gian Luigi GessaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Evaluation of selective cannabinoid CB<sub>1</sub> and CB<sub>2</sub> receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis
Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24 h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1β), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1β, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis