9 research outputs found

    Development of 1,2,3-Triazole-Based Sphingosine Kinase Inhibitors and Their Evaluation as Antiproliferative Agents

    Get PDF
    Two series of N-(aryl)-1-(hydroxyalkyl)pyrrolidine-2-carboxamides (2a-2g and 3a-3g) and 1,4-disubstituted 1,2,3-triazoles (5a-5h and 8a-8h) were synthesized. All the compounds, containing a lipophilic tail and a polar headgroup, were evaluated as sphingosine kinase (SphK) inhibitors by assessing their ability to interfere with the acetylcholine (Ach) induced relaxation of aortic rings pre-contracted with phenylephrine. Moreover, their antiproliferative activity was tested on several cell lines expressing both SphK1 and SphK2. Compounds 5h and 8f, identified as the most efficient antiproliferative agents, showed a different selectivity profile, with 8f being selective for SphK1

    Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization

    No full text
    The incidence and severity of asthma preponderate in women versus men. Leukotrienes (LTs) are lipid mediators involved in asthma pathogenesis, and sex disparities in LT biosynthesis and anti-LT pharmacology in inflammation have recently emerged. Here, we report on sex dimorphism in LT production during allergen sensitization and its correlation to lung function. While high plasma levels of IgE, as sensitization index, were elevated in both sexes, LT levels increased only in lungs of female ovalbumin-sensitized BALB/c mice. Sex-dependent elevated LT levels strictly correlated to an enhanced airway hyperreactivity, pulmonary inflammation and mast cell infiltration/activation in female mice. Importantly, this sex bias was coupled to superior therapeutic efficacy of different types of clinically used LT modifiers like zileuton, MK886 and montelukast in female animals. Our findings reveal sex-dependent LT production as a basic mechanism of sex dimorphism in allergic asthma, and suggest that women might benefit more from anti-LT asthma therapy

    5α-dihydrotestosterone abrogates sex bias in asthma like features in the mouse

    No full text
    Androgen levels inversely correlate with the incidence, susceptibility and severity of asthma. However, whether male sex hormones such as 5α-dihydrotestosterone (DHT) have beneficial effects on asthma symptoms and/or could affect asthma susceptibility have not been investigated. DHT administration to female mice, during the sensitization phase, abrogates the sex bias in bronchial hyperreactivity. This effect correlates with inhibition of leukotriene biosynthesis in the lung. DHT significantly inhibits also other asthma-like features such as airway hyperplasia and mucus production in sensitized female mice. Conversely, DHT does not affect plasma IgE levels as well as CD3+CD4+ IL-4+ cell and IgE+c-Kit+ cell infiltration within the lung but prevents pulmonary mast cell activation. The in vitro study on RBL-2H3 cells confirms that DHT inhibits mast cell degranulation. In conclusion, our data demonstrate that immunomodulatory effects of DHT on mast cell activation prevent the translation of allergen sensitization into clinical manifestation of asthma

    Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease

    No full text
    Background and purpose: Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. Experimental approach: A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-β signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). Key results: Following incubation with TGF-β or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-β receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-β, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-β blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-β up-regulation, fibroblasts recruitment and airway hyperresponsiveness. Conclusion and implications: Targeting S1P/TGF-β axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma

    Palmitoylethanolamide Supplementation during Sensitization Prevents Airway Allergic Symptoms in the Mouse

    No full text
    One important risk factor for the development of asthma is allergen sensitization. Recent increasing evidence suggests a prominent role of mast cells in asthma pathophysiology. Since Palmitoylethanolamide (PEA), an endogenous lipid mediator chemically related to – and co-released with- the endocannabinoid anandamide, behaves as a local autacoid down-regulator of mast cell activation and inflammation, we explored the possible contribution of PEA in allergic sensitization, by using ovalbumin (OVA) as sensitizing agent in the mouse. PEA levels were dramatically reduced in the bronchi of OVA-treated animals. This effect was coupled to a significant up-regulation of CB2 and GPR55 receptors, two of the proposed molecular PEA targets, in bronchi harvested from allergen-sensitized mice. PEA supplementation (10 mg/kg, 15 min before each allergen exposure) prevented OVA-induced bronchial hyperreactivity, but it did not affect IgE plasma increase. On the other hand, PEA abrogated allergen-induced cell recruitment as well as pulmonary inflammation. Evaluation of pulmonary sections evidenced a significant inhibitory action of PEA on pulmonary mast cell recruitment and degranulation, an effect coupled to a reduction of leukotriene C4 production. These findings demonstrate that allergen sensitization negatively affects PEA bronchial levels and suggest that its supplementation has the potential to prevent the development of asthma-like features

    A Novel Transdermal Delivery System for the Anti-Inflammatory Lumiracoxib: Influence of Oleic Acid on In Vitro Percutaneous Absorption and In Vivo Potential Cutaneous Irritation

    No full text
    Transdermal delivery of non-steroidal anti-inflammatory drugs may be an interesting strategy for delivering these drugs to the diseased site, but it would be ineffective due to low skin permeability. We investigated whether oleic acid (OA), a lipid penetration enhancer in poloxamer gels named poloxamer-based delivery systems (PBDS), can improve lumiracoxib (LM) delivery to/through the skin. The LM partition coefficient (K) studies were carried out in order to evaluate the drug lipophilicity grade (Koctanol/buffer), showing values >1 which demonstrated its high lipophilicity. Both in vitro percutaneous absorption and skin retention studies of LM were measured in the presence or absence of OA (in different concentrations) in PBDS using porcine ear skin. The flux of in vitro percutaneous absorption and in vitro retention of LM in viable epidermis increased in the presence of 10.0% (w/w) OA in 25.0% (w/w) poloxamer gel. In vivo cutaneous irritation potential was carried out in rabbits showing that this formulation did not provide primary or cumulative cutaneous irritability in animal model. The results showed that 25.0% poloxamer gel containing 10.0% OA is potential transdermal delivery system for LM

    Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases

    No full text
    corecore