20 research outputs found

    Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).</p> <p>Methods</p> <p>Stable cell lines with TFPI (both α and ÎČ) and only TFPIÎČ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.</p> <p>Results</p> <p>Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIÎČ was downregulated, revealing a novel function of this isoform in cancer metastasis.</p> <p>Conclusions</p> <p>Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.</p

    TFPIα and TFPIÎČ are expressed at the surface of breast cancer cells and inhibit TF-FVIIa activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue factor (TF) pathway inhibitor-1 (TFPI) is expressed in several malignant tissues- and cell lines and we recently reported that it possesses anti-tumor effects in breast cancer cells, indicating a biological role of TFPI in cancer. The two main splice variants of TFPI; TFPIα and TFPIÎČ, are both able to inhibit TF-factor VIIa (FVIIa) activity in normal cells, but only TFPIα circulates in plasma. The functional importance of TFPIÎČ is therefore largely unknown, especially in cancer cells. We aimed to characterize the expression and function of TFPIα, TFPIÎČ, and TF in a panel of tumor derived breast cancer cell lines in comparison to normal endothelial cells.</p> <p>Methods</p> <p>TFPIα, TFPIÎČ, and TF mRNA and protein measurements were conducted using qRT-PCR and ELISA, respectively. Cell-associated TFPI was detected after phosphatidylinositol-phospholipase C (PI-PLC) and heparin treatment by flow cytometry, immunofluorescence, and Western blotting. The potential anticoagulant activity of cell surface TFPI was determined in a factor Xa activity assay.</p> <p>Results</p> <p>The expression of both isoforms of TFPI varied considerably among the breast cancer cell lines tested, from no expression in Sum149 cells to levels above or in the same range as normal endothelial cells in Sum102 and MDA-MB-231 cells. PI-PLC treatment released both TFPIα and TFPIÎČ from the breast cancer cell membrane and increased TF activity on the cell surface, showing TF-FVIIa inhibitory activity of the glycosylphosphatidylinositol- (GPI-) anchored TFPI. Heparin treatment released TFPIα without decreasing the cell surface levels, thus indicating the presence of intracellular storage pools of TFPIα in the breast cancer cells.</p> <p>Conclusion</p> <p>GPI-attached TFPI located at the surface of breast cancer cells inhibited TF activity and could possibly reduce TF signaling and breast cancer cell growth locally, indicating a therapeutic potential of the TFPIÎČ isoform.</p

    Indirect regulation of TFPI-2 expression by miR-494 in breast cancer cells

    No full text
    Abstract TFPI-2 has been shown to be involved in breast cancer pathogenesis by inhibiting extracellular matrix degradation, and low levels are associated with disease progression. As microRNA-494 (miR-494) protects against breast cancer progression, we investigated whether miR-494 is involved in the regulation of TFPI-2 in MCF-7 breast cancer cells. TFPI-2 mRNA and protein levels increased after transfection with miR-494 mimic, and TFPI-2 mRNA and miR-494 levels correlated positively in tumors from breast cancer patients. No specific binding sites for miR-494 in the 3â€Č-untranslated region (UTR) of TFPI2 were identified; however, miR-494 was predicted in silico to bind 3â€Č-UTR of the transcription factors AHR and ELF-1, which have potential binding sites in the TFPI2 promoter. ELF-1 mRNA was downregulated whereas AHR mRNA levels were upregulated after transfection with miR-494 mimic. Knockdown of ELF-1 and AHR increased and reduced TFPI-2 mRNA levels, respectively. Increased luciferase activity was seen when TFPI-2 promoter constructs containing the potential AHR or ELF-1 binding sites were co-transfected with miR-494 mimic. In conclusion, TFPI-2 mRNA levels were upregulated by miR-494 in MCF-7 breast cancer cells most likely by an indirect association where miR-494 targeted the transcription factors AHR and ELF-1. This association was supported in a breast cancer cohort

    Tumor expression, plasma levels and genetic polymorphisms of the coagulation inhibitor TFPI are associated with clinicopathological parameters and survival in breast cancer, in contrast to the coagulation initiator TF

    Get PDF
    Introduction Hypercoagulability in malignancy increases the risk of thrombosis, but is also involved in cancer progression. Experimental studies suggest that tissue factor (TF) and tissue factor pathway inhibitor (TFPI) are involved in cancer biology as a tumor- promoter and suppressor, respectively, but the clinical significance is less clear. Here, we aimed to investigate the clinical relevance of TF and TFPI genetic and phenotypic diversity in breast cancer. Methods The relationship between tumor messenger RNA (mRNA) expression and plasma levels of TF and TFPI (α and ÎČ), tagging single nucleotide polymorphisms (tagSNPs) in F3 (TF) (n = 6) and TFPI (n = 18), and clinicopathological characteristics and molecular tumor subtypes were explored in 152 treatment naive breast cancer patients. The effect of tumor expressed TF and TFPIα and TFPIÎČ on survival was investigated in a merged breast cancer dataset of 1881 patients. Results Progesterone receptor negative patients had higher mRNA expression of total TFPI (α + ÎČ) (P = 0.021) and TFPIÎČ (P = 0.014) in tumors. TF mRNA expression was decreased in grade 3 tumors (P = 0.003). In plasma, total TFPI levels were decreased in patients with larger tumors (P = 0.013). SNP haplotypes of TFPI, but not TF, were associated with specific clinicopathological characteristics like tumor size (odds ratio (OR) 3.14, P = 0.004), triple negativity (OR 2.4, P = 0.004), lymph node spread (OR 3.34, P = 0.006), and basal-like (OR 2.3, P = 0.011) and luminal B (OR 3.5, P = 0.005) molecular tumor subtypes. Increased expression levels of TFPIα and TFPIÎČ in breast tumors were associated with better outcome in all tumor subtypes combined (P = 0.007 and P = 0.005) and in multiple subgroups, including lymph node positive subjects (P = 0.006 and P = 0.034). Conclusions This study indicates that genetic and phenotypic variation of both TFPIα and TFPIÎČ, more than TF, are markers of cancer progression. Together with the previously demonstrated tumor suppressor effects of TFPI, the beneficial effect of tumor expressed TFPI on survival, renders TFPI as a potential anticancer agent, and the clinical significance of TFPI in cancer deserves further investigation

    Coagulation factor V is a marker of tumor-infiltrating immune cells in breast cancer

    No full text
    Background Factor (F) V is an essential cofactor in blood coagulation, however, F5 expression in breast tumors has also been linked to tumor aggressiveness and overall survival. The specific role of FV in breast cancer is yet unknown. We therefore aimed at dissecting the biological relevance of FV in breast cancer. Methods Gene expression data from a Scandinavian breast cancer cohort (n = 363) and the cancer genome atlas (TCGA) (n = 981) and 12 replication cohorts were used to search for F5 co-expressed genes, followed by gene ontology analysis. Pathological and bioinformatic tools were used to evaluate immune cell infiltration and tumor purity. T cell activation, proliferation and migration were studied in FV treated Jurkat T cells. Results F5 co-expressed genes were mainly associated with immune system processes and cell activation. Tumors with high expression of F5 were more infiltrated with both lymphoid (T cells, NK cells, and B cells) and myeloid cells (macrophages and dendritic cells), and F5 expression was negatively correlated with tumor purity (ρ = −0.32). Confirming a prognostic role, data from the Kaplan-Meier plotter showed that high F5 expression was associated with improved relapse-free survival. The strongest association was observed in basal-like breast cancer (HR = 0.55; 95% CI, 0.42–0.71). Exogenous FV did not substantially affect activation, proliferation or migration of human T cells. Conclusions F5 was identified as a novel marker of immune cell infiltration in breast cancer, and the prognostic role of F5 was verified. FV emerge as an interesting immunological biomarker with potential therapeutic relevance for the cancer-inflammation-thrombosis circuit

    Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study

    Get PDF
    Background The procoagulant state in cancer increases the thrombotic risk, but also supports tumor progression. To investigate the molecular mechanisms controlling cancer and hemostasis, we conducted a case-control study of genotypic and phenotypic variables of the tissue factor (TF) pathway of coagulation in breast cancer. Methods 366 breast cancer patients and 307 controls were genotyped for SNPs (n = 41) in the F2, F3 (TF), F5, F7, F10, TFPI and EPCR genes, and assayed for plasma coagulation markers (thrombin generation, activated protein C (APC) resistance, D-dimer, antithrombin, protein C, protein S, and TF pathway inhibitor (TFPI)). Associations with breast cancer were evaluated using logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs), or the chi-square test. Results Four SNPs in F5 (rs12120605, rs6427202, rs9332542 and rs6427199), one in F10 (rs3093261), and one in EPCR (rs2069948) were associated with breast cancer. EPCR rs2069948 was associated with estrogen receptor (ER) and progesterone receptor (PR) positivity, while the SNPs in F5 appeared to follow hormone receptor negative and triple negative patients. The prothrombotic polymorphisms factor V Leiden (rs6025) and prothrombin G20210A (rs1799963) were not associated with breast cancer. High APC resistance was associated with breast cancer in both factor V Leiden non-carriers (OR 6.5, 95% CI 4.1-10.4) and carriers (OR 38.3, 95% CI 6.2-236.6). The thrombin parameters short lag times (OR 5.8, 95% CI 3.7-9.2), short times to peak thrombin (OR 7.1, 95% CI 4.4-11.3), and high thrombin peak (OR 6.1, 95% CI 3.9-9.5) predicted presence of breast cancer, and high D-dimer also associated with breast cancer (OR 2.0, 95% CI 1.3-3.3). Among the coagulation inhibitors, low levels of antithrombin associated with breast cancer (OR 5.7, 95% CI 3.6-9.0). The increased coagulability was not explained by the breast cancer associated SNPs, and was unaffected by ER, PR and triple negative status. Conclusions A procoagulant phenotype was found in the breast cancer patients. Novel associations with SNPs in F5, F10 and EPCR to breast cancer susceptibility were demonstrated, and the SNPs in F5 were confined to hormone receptor negative and triple negative patients. The study supports the importance of developing new therapeutic strategies targeting coagulation processes in cancer

    Syndecan-3 and TFPI Colocalize on the Surface of Endothelial-, Smooth Muscle-, and Cancer Cells

    No full text
    <div><p>Background</p><p>Tissue factor (TF) pathway inhibitor (TFPI) exists in two isoforms; TFPIα and TFPIÎČ. Both isoforms are cell surface attached mainly through glycosylphosphatidylinositol (GPI) anchors. TFPIα has also been proposed to bind other surface molecules, like glycosaminoglycans (GAGs). Cell surface TFPIÎČ has been shown to exert higher anticoagulant activity than TFPIα, suggesting alternative functions for TFPIα. Further characterization and search for novel TFPI binding partners is crucial to completely understand the biological functions of cell associated TFPI.</p><p>Methods and Results</p><p>Potential association of TFPI to heparan sulphate (HS) proteoglycans in the syndecan family were evaluated by knock down studies and flow cytometry analysis. Cell surface colocalization was assessed by confocal microscopy, and native PAGE or immunoprecipitation followed by Western blotting was used to test for protein interaction. Heparanase was used to enzymatically degrade cell surface HS GAGs. Anticoagulant potential was evaluated using a factor Xa (FXa) activity assay. Knock down of syndecan-3 in endothelial,- smooth muscle- and breast cancer cells reduced the TFPI surface levels by 20-50%, and an association of TFPIα to syndecan-3 on the cell surface was demonstrated. Western blotting indicated that TFPIα was found in complex with syndecan-3. The TFPI bound to syndecan-3 did not inhibit the FXa generation. Removal of HS GAGs did not release TFPI antigen from the cells.</p><p>Conclusions</p><p>We demonstrated an association between TFPIα and syndecan-3 in vascular cells and in cancer cells, which did not appear to depend on HS GAGs. No anticoagulant activity was detected for the TFPI associated with syndecan-3, which may indicate coagulation independent functions for this cell associated TFPI pool. This will, however, require further investigation.</p></div

    TFPI mRNA and antigen levels in syndecan-3 knocked down cells.

    No full text
    <p>A) HCAEC, Sum102 and HCASMC cells with syndecan-3 knocked down were analysed for TFPI mRNA expression by qRT-PCR. The ΔΔCt method was used to calculate the relative TFPI expression (RQ) compared to control cells (Neg. Control siRNA). Mean values + SD (n≄6 biological parallels) of three individual experiments are presented. B) TFPI antigen levels were measured by ELISA in cell lysates from HCAEC, Sum102 and HCASMC after syndecan-3 knock down. TFPI antigen levels relative to control cells are shown. Mean values + SD (n≄6 biological parallels) of two individual experiments are presented.</p
    corecore