3 research outputs found

    Use of a Routh–Russel Deformation Map To Achieve Film Formation of a Latex with a High Glass Transition Temperature

    No full text
    In the film formation of latex, particle deformation can occur by processes of wet sintering, dry sintering, or capillary action. When latex films dry nonuniformly and when particles deform and coalesce while the film is still wet, a detrimental skin layer will develop at the film surface. In their process model, Routh and Russel proposed that the operative particle deformation mechanism can be determined by the values of control parameters on a deformation map. Here, the film formation processes of three methyl methacrylate/butyl acrylate copolymer latexes with high glass transition temperatures (<i>T</i><sub>g</sub>), ranging from 45 to 64 °C, have been studied when heated by infrared radiation. Adjusting the infrared (IR) power density enables the film temperature, polymer viscosity, and evaporation rate during latex film formation to be controlled precisely. Different polymer particle deformation mechanisms have been demonstrated for the same latex under a variety of film formation process conditions. When the temperature is too high, a skin layer develops. On the other hand, when the temperature is too low, particles deform by dry sintering, and the process requires extended time periods. The deduced mechanisms can be interpreted and explained by the Routh–Russel deformation maps. Film formation of hard (high <i>T</i><sub>g</sub>) coatings is achieved without using coalescing aids that emit volatile organic compounds (VOCs), which is a significant technical achievement

    Acute kidney disease beyond day 7 after major surgery: a secondary analysis of the EPIS-AKI trial

    No full text
    Purpose: Acute kidney disease (AKD) is a significant health care burden worldwide. However, little is known about this complication after major surgery. Methods: We conducted an international prospective, observational, multi-center study among patients undergoing major surgery. The primary study endpoint was the incidence of AKD (defined as new onset of estimated glomerular filtration rate (eCFR) &lt; 60&nbsp;ml/min/1.73&nbsp;m2 present on day 7 or later) among survivors. Secondary endpoints included the relationship between early postoperative acute kidney injury (AKI) (within 72&nbsp;h after major surgery) and subsequent AKD, the identification of risk factors for AKD, and the rate of chronic kidney disease (CKD) progression in patients with pre-existing CKD. Results: We studied 9510 patients without pre-existing CKD. Of these, 940 (9.9%) developed AKD after 7&nbsp;days of whom 34.1% experiencing an episode of early postoperative-AKI. Rates of AKD after 7&nbsp;days significantly increased with the severity (19.1% Kidney Disease Improving Global Outcomes [KDIGO] 1, 24.5% KDIGO2, 34.3% KDIGO3; P &lt; 0.001) and duration (15.5% transient vs 38.3% persistent AKI; P &lt; 0.001) of early postoperative-AKI. Independent risk factors for AKD included early postoperative-AKI, exposure to perioperative nephrotoxic agents, and postoperative pneumonia. Early postoperative-AKI carried an independent odds ratio for AKD of 2.64 (95% confidence interval [CI] 2.21-3.15). Of 663 patients with pre-existing CKD, 42 (6.3%) had worsening CKD at day 90. In patients with CKD and an episode of early AKI, CKD progression occurred in 11.6%. Conclusion: One in ten major surgery patients developed AKD beyond 7&nbsp;days after surgery, in most cases without an episode of early postoperative-AKI. However, early postoperative-AKI severity and duration were associated with an increased rate of AKD and early postoperative-AKI was strongly associated with AKD independent of all other potential risk factors
    corecore