20 research outputs found

    The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions

    Get PDF
    BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression

    Survival outcomes of patients with advanced mucosal melanoma diagnosed from 2013 to 2017 in the Netherlands - A nationwide population-based study

    Get PDF
    Background: Mucosal melanoma (MM) is rare and has a poor prognosis. Since 2011, new effective treatments are available for advanced melanoma. It is unclear whether patients with mucosal melanoma equally benefit from these new treatments compared with patients with cutaneous melanoma (CM). Methods: Patients with advanced MM and CM diagnosed between 2013 and 2017 were included from a nationwide population-based registry – the Dutch Melanoma Treatment Registry. Overall survival (OS) was estimated with the Kaplan-Meier method (also for a propensity score-matched cohort). A Cox model was used to analyse the association of possible prognostic factors with OS. Results: In total, 120 patients with MM and 2960 patients with CM were included. Median OS was 8.7 months and 14.5 months, respectively. Patients with MM were older (median age 70 versus 65 years) and more often female (60% versus 41%), compared with CM. In total, 77% and 2% of the MM patients were treated with first-line immunotherapy and targeted therapy, respectively, compared with 49% and 33% of the CM patients. In contrast to CM, OS for MM did not improve for patients diagnosed in 2015–2017, compared with 2013–2014. ECOG performance score ≥1 (HR = 1.99 [1.26–3.15; p = 0.003]) and elevated LDH level (HR = 1.63 [0.96–2.76]; p = 0.069) in MM were associated with worse survival. Conclusions: Within the era of immune and targeted therapies, prognosis for patients with advanced MM has not improved as much as for CM. Collaboration is necessary to enlarge sample size for research to improve immunotherapeutic strategies and identify targetable mutations

    Pelvic Actinomycosis-Like Disease Due to Propionibacterium propionicum after Hysteroscopic Removal of an Intrauterine Deviceâ–¿

    No full text
    A female patient presented with episodes of fever and pain in the lower right abdomen after hysteroscopic removal of an intrauterine device 2 months earlier. Pelvic actinomycosis originating from a tubo-ovarian abscess was diagnosed with Propionibacterium propionicum, formerly known as Arachnia propionica, as causative agent

    Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6

    No full text
    Cervical cancer is the possible outcome of genital infection with high-risk human papillomavirus (HPV) and is preceded by a phase of persistent HPV infection during which the host immune system fails to eliminate the virus. Fortunately, the majority of genital HPV infections are cleared before the development of (pre)malignant lesions. Analysis of CD4+ T-helper (Th) immunity against the E2, E6, and E7 antigens of HPV16 in healthy women revealed strong proliferative E2- and E6-specific responses associated with prominent IFN-gamma and interleukin 5 secretion. This indicates that the naturally arising virus-induced immune response displays a mixed Th1/Th2 cytokine profile. Of all HPV16+ cervical cancer patients, approximately half failed to mount a detectable immune response against the HPV16-derived peptides. The other half of the patients showed impaired HPV16-specific proliferative responses, which generally lacked both IFN-gamma and interleukin 5. This indicates that the HPV16-specific CD4+ T-cell response in cervical cancer patients is either absent or severely impaired, despite a relatively good immune status of the patients, as indicated by intact responses against recall antigens. It is highly conceivable that proper CD4+ T-cell help is important for launching an effective immune attack against HPV because infection of cervical epithelia by this virus is, at least initially, not accompanied by gross disturbance of this tissue and/or strong proinflammatory stimuli. Therefore, our observations concerning the lack of functional HPV16-specific CD4+ T-cell immunity in patients with cervical cancer offer a possible explanation for the development of this diseas

    Monitoring of Ex Vivo Cyclosporin a Activity in Healthy Volunteers Using T Cell Function Assays in Relation to Whole Blood and Cellular Pharmacokinetics

    No full text
    Therapeutic drug monitoring (TDM) of calcineurin inhibitors (i.e., tacrolimus and cyclosporin A) is standard of care after solid organ transplantation. Although the incidence of acute rejection has strongly decreased, there are still many patients who experience severe side effects or rejection after long-term treatment. In this healthy volunteer study we therefore aimed to identify biomarkers to move from a pharmacokinetic-based towards a pharmacodynamic-based monitoring approach for calcineurin inhibitor treatment. Healthy volunteers received a single dose of cyclosporine A (CsA) or placebo, after which whole blood samples were stimulated to measure ex vivo T cell functionality, including proliferation, cytokine production, and activation marker expression. The highest whole blood concentration of CsA was found at 2 h post-dose, which resulted in a strong inhibition of interferon gamma (IFNy) and interleukin-2 (IL-2) production and expression of CD154 and CD71 on T cells. Moreover, the in vitro effect of CsA was studied by incubation of pre-dose whole blood samples with a concentration range of CsA. The average in vitro and ex vivo CsA activity overlapped, making the in vitro dose–effect relationship an interesting method for prediction of post-dose drug effect. The clinical relevance of the results is to be explored in transplantation patients on calcineurin inhibitor treatment

    The Human Vulvar Microbiome: A Systematic Review

    No full text
    The link between cancer and the microbiome is a fast-moving field in research. There is little knowledge on the microbiome in ((pre)malignant) conditions of the vulvar skin. This systematic review aims to provide an overview of the literature regarding the microbiome composition of the healthy vulvar skin and in (pre)malignant vulvar disease. This study was performed according to the PRISMA guidelines. A comprehensive, electronic search strategy was used to identify original research articles (updated September 2021). The inclusion criteria were articles using culture-independent methods for microbiome profiling of the vulvar region. Ten articles were included. The bacterial composition of the vulva consists of several genera including Lactobacillus, Corynebacterium, Staphylococcus and Prevotella, suggesting that the vulvar microbiome composition shows similarities with the corresponding vaginal milieu. However, the vulvar microbiome generally displayed higher diversity with commensals of cutaneous and fecal origin. This is the first systematic review that investigates the relationship between microbiome and vulvar (pre)malignant disease. There are limited data and the level of evidence is low with limitations in study size, population diversity and methodology. Nevertheless, the vulvar microbiome represents a promising field for exploring potential links for disease etiology and targets for therapy

    Vulvar Paget disease: A national retrospective cohort study

    Get PDF
    Background: Vulvar Paget disease (VPD) is a rare skin disorder that is considered premalignant. Objective: To assess the clinical course, treatment schedules, and effect of invasion and treatment on recurrence and survival in patients with VPD. Methods: Data on women with VPD were retrieved from the medical files and pathology reports in all Dutch tertiary university medical centers. Disease-free survival and 5-year disease-specific survival were estimated by using Kaplan-Meier curves. Results: Data on 113 patients whose VPD was diagnosed between 1991 and 2016 were analyzed; 77% had noninvasive VPD. Most of the women (65%) underwent a surgical procedure. Recurrences were reported in 40%. Of the women with noninvasive VPD, 8% developed invasion. There were no disease-specific deaths reported in the women with noninvasive VPD. The 5-year disease-specific survival rate was greater than 98% in noninvasive and microinvasive VPD, but significantly worse in invasive VPD (50% [P < .0005]). Limitations: The main limitations of this study are its retrospective character and the fact that original pathology samples were not available for reassessment. Conclusions: VPD is extremely rare, and the recurrence rates are high. Most patients have noninvasive VPD, which does not affect survival and should be considered a chronic disorder with limited invasive potential. In cases of invasive disease, survival decreases significantly

    Image_4_The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions.JPEG

    No full text
    BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.</p

    Table_2_The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions.docx

    No full text
    BackgroundThe role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls.MethodsWomen with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements.ResultsHealthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043).ConclusionThis study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.</p
    corecore