284 research outputs found

    Action of HMGB1 on miR221/222 cluster in neuroblastoma cell lines

    Get PDF
    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and -222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for neuroblastoma

    Graphene oxide nanoribbons induce autophagic vacuoles in neuroblastoma cell lines

    Get PDF
    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells

    HMGB1-Induced Cross Talk between PTEN and miRs 221/222 in Thyroid Cancer

    Get PDF
    High mobility group box 1 (HMGB1) is an ubiquitous protein that plays different roles in the nucleus, cytoplasm and extra-cellular space. It is an important DAMP molecule that allows communication between damaged or tumor cells and the immune system. Tumor cells exploit HMGB1’s ability to activate intracellular pathways that lead to cell growth and migration. Papillary thyroid cancer is a well differentiated tumor and is often used to study relationships between cells and the inflammatory microenvironment as the latter is characterized by high levels of inflammatory cells and cytokines. Anaplastic thyroid cancer is one of the most lethal human cancers in which many microRNAs and tumor suppressor genes are de-regulated. Up-regulation of microRNAs 221 and 222 has been shown to induce the malignant phenotype in many human cancers via inhibition of PTEN expression. In this study we suggest that extracellular HMGB1 interaction with RAGE enhances expression of oncogenic cluster miR221/222 that in turn inhibits tumor suppressor gene PTEN in two cell lines derived from human thyroid anaplastic and papillary cancers. The newly identified pathway HMGB1/RAGE/miR 221/222 may represent an effective way of tumor escape from immune surveillance that could be used to develop new therapeutic strategies against anaplastic tumors

    Metal free graphene oxide (GO) nanosheets and pristine-single wall carbon nanotubes (p-SWCNTs) biocompatibility investigation: a comparative study in different human cell lines

    Get PDF
    The in vitro biocompatibility of Graphene Oxide (GO) nanosheets, which were obtained by the electrochemical exfoliation of graphite electrodes in an electrolytic bath containing salts, was compared with the pristine Single Wall Carbon Nanotubes (p-SWCNTs) under the same experimental conditions in different human cell lines. The cells were treated with different concentrations of GO and SWCNTs for up to 48 h. GO did not induce any significant morphological or functional modifications (demonstrating a high biocompatibility), while SWNCTs were toxic at any concentration used after a few hours of treatment. The cell viability or cytotoxicity were detected by the trypan blue assay and the lactate dehydrogenase LDH quantitative enzymatic test. The Confocal Laser Scanning Microscopy (CLSM) and transmission electron microscopy (TEM) analysis demonstrated the uptake and internalization of GO sheets into cells, which was localized mainly in the cytoplasm. Different results were observed in the same cell lines treated with p-SWCNTs. TEM and CLSM (Confocal Laser Scanning Microscopy) showed that the p-SWCNTs induced vacuolization in the cytoplasm, disruption of cellular architecture and damage to the nuclei. The most important result of this study is our finding of a higher GO biocompatibility compared to the p-SWCNTs in the same cell lines. This means that GO nanosheets, which are obtained by the electrochemical exfoliation of a graphite-based electrode (carried out in saline solutions or other physiological working media) could represent an eligible nanocarrier for drug delivery, gene transfection and molecular cell imaging tests

    From human Megakaryocytes to platelets: Effects of aspirin on high-mobility group Box 1/receptor for advanced glycation end products axis

    Get PDF
    Platelets (PLTs) are the major source of high-mobility group box 1 (HMGB1), a protein that is involved in sterile inflammation of blood vessels and thrombosis. Megakaryocytes (MKs) synthesize HMGB1 and transfer both protein and mRNA into PLTs and PLT-derived microvesicles (MV). Free HMGB1 found in supernatants of in vitro differentiated MKs and in a megakaryoblastic cell line (DAMI cells). Aspirin “in vivo” and “in vitro” not only reduces HMGB1 and receptor for advanced glycation end products expression on MKs and PLTs but also drives the movement of HMGB1 from MKs into PLTs and PLT-derived MV. These findings suggest that consumption of low doses of aspirin reduces the risk of atherosclerosis complications as well as reducing PLT aggregation by the inhibition of COX-1

    Practical and sustainable preparation of pyrrolo[2,3-b]indoles by Cu/Fe catalyzed intramolecular C(sp2)–H amination

    Get PDF
    A practical, robust and chemoselective approach toward the synthesis of pyrrolo[2,3-b]indoles via direct intramolecular C–H bond amination of α-indolylhydrazones has been achieved. This base and oxidant-free chemoselective transformation relies on a Cu/Fe co-catalyst system that operates at 50 °C in air with water as the only reaction medium. The easy product isolation together with the recyclable catalyst aqueous system (reused at least five times, maintaining over 50% of its catalytic activity) can provide an effective environmentally benign approach to fused N-heterocycles of remarkable interest in pharmaceutical and medicinal chemistry. The ability of the hydrazone residue to act as a chelating/directing group as well as an aminating agent guarantees the success of this C–H functionalization

    Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-pyridazino[3,4-b]indoles

    Get PDF
    Herein, we report the successful syntheses of scarcely represented indole-based heterocycles which have a structural connection with biologically active natural-like molecules. The selective oxidation of indoline nucleus to indole, hydrolysis of ester and carbamoyl residues followed by decarboxylation with concomitant aromatization of the pyridazine ring starting from tetrahydro-1H-pyridazino[3,4-b]indole derivatives lead to fused indole-pyridazine compounds. On the other hand, non-fused indole-pyrazol-5-one scaffolds are easily prepared by subjecting the same C2,C3-fused indoline tetrahydropyridazine to treatment with trifluoroacetic acid (TFA). These methods feature mild conditions, easy operation, high yields in most cases avoiding the chromatographic purification, and broad substrate scope. Interestingly, the formation of indole linked pyrazol-5-one system serves as a good example of the application of the umpolung strategy in the synthesis of C3-alkylated indoles

    Synthesis of Azacarbolines via PhIO2‑Promoted Intramolecular Oxidative Cyclization of α‑Indolylhydrazones

    Get PDF
    An unprecedented synthesis of polysubstituted indolefused pyridazines (azacarbolines) from α-indolylhydrazones under oxidative conditions using a combination of iodylbenzene (PhIO2) and trifluoroacetic acid (TFA) has been developed. This transformation is conducted without the need for transition metals, harsh conditions, or an inert atmosphere

    FeCl3-catalyzed formal [3 + 2] cyclodimerization of 4-carbonyl-1,2-diaza-1,3-dienes

    Get PDF
    none6noSubstituted 1-aminopyrroles are easily accessible by means of iron-catalyzed cascade reaction that requires as starting materials the solely 1,2-diaza-1,3-dienes. Mechanistically, the formal [3 + 2] cyclodimerization is hypothesized to proceed through a [4 + 2] cyclodimerization of 4-substitued 1,2-diaza-1,3-dienes followed by intramolecular ring closure to fused diaziridin-pyrrolines whose successive opening results in a ring contraction process with consequent generation of the pyrrole moiety. The presence of activated hydrogen in the terminal position of the azo-enic moiety is crucial for the success of the synthesis.openGiacomo Mari, Matteo Corrieri, Lucia De Crescentini, Gianfranco Favi, Stefania Santeusanio, Fabio MantelliniMari, Giacomo; Corrieri, Matteo; DE CRESCENTINI, Lucia; Favi, Gianfranco; Santeusanio, Stefania; Mantellini, Fabi

    Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers

    Get PDF
    Low-carbon hydrogen is considered as one of the key measures to decarbonise continental Europe and Japan. Northern Norway has abundant renewable energy and natural gas resources which can be converted to low-carbon hydrogen. However, Norway is located relatively far away from these markets and finding efficient ways to transport this hydrogen to the end-user is critical. In this study, liquefied hydrogen (LH2) and ammonia (NH3), as H2-based energy carriers, are analysed and compared with respect to energy efficiency, CO2 footprint and cost. It is shown that the LH2 chain is more energy efficient and has a smaller CO2 footprint (20 and 23 kg-CO2/MWhth for Europe and Japan, respectively) than the NH3 chain (76 and 122 kg-CO2/MWhth). Furthermore, the study finds the levelized cost of hydrogen delivered to Rotterdam to be lower for LH2 (5.0 EUR/kg-H2) compared to NH3 (5.9 EUR/kg-H2), while the hydrogen costs of the two chains for transport to Japan are in a similar range (about 7 EUR/kg-H2). It is also shown that under optimistic assumptions, the costs associated with the LH2 chain (3.2 EUR/kg-H2) are close to meeting the 2030 hydrogen cost target of Japan (2.5 EUR/kg-H2). Keywords Techno-economic analysisLiquid hydrogenAmmoniaLong distance transportacceptedVersio
    • …
    corecore