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Platelets (PLTs) are the major source of high-mobility group box 1 (HMGB1), a protein 
that is involved in sterile inflammation of blood vessels and thrombosis. Megakaryocytes 
(MKs) synthesize HMGB1 and transfer both protein and mRNA into PLTs and PLT-derived 
microvesicles (MV). Free HMGB1 found in supernatants of in  vitro differentiated MKs 
and in a megakaryoblastic cell line (DAMI cells). Aspirin “in vivo” and “in vitro” not only 
reduces HMGB1 and receptor for advanced glycation end products expression on MKs 
and PLTs but also drives the movement of HMGB1 from MKs into PLTs and PLT-derived 
MV. These findings suggest that consumption of low doses of aspirin reduces the risk 
of atherosclerosis complications as well as reducing PLT aggregation by the inhibition 
of COX-1.

Keywords: aspirin, platelets, megakaryocytes, high-mobility group box 1, receptor for advanced glycation end 
products

inTrODUcTiOn

Platelets (PLTs) are involved in hemostasis, thrombosis, and immunity. Apart from PLT plug for-
mation and releasing coagulation factors, PLTs are important for vessel remodeling and deposition 
of constituents that are active in extravascular matrix. Inflammation and coagulation are connected 
and regulated by common pathways and PLTs provide a link between coagulation and inflamma-
tion (1, 2).

Platelets arise from progenitor megakaryocytes (MKs) that provide them with peptides that are 
active in inflammation and coagulation and with mRNAs that are translated upon their activation.

One of the molecules investigated for its role in both coagulation and inflammation is high-
mobility group box 1 (HMGB1) (3, 4), which is known to be produced in MKs and PLTs (5), as 
in most other cells. HMGB1 is a damage-associated molecular pattern that when released by 
stressed cells starts inflammation. Levels of HMGB1 increase in plasma and serum of patients 
with inflammatory diseases associated with sepsis or thrombosis. Studies performed in transgenic 
mice with ablation of PLT-specific HMGB1 (PLT-specific HMGB1-knockout) and in an in  vivo 
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TaBle 1 | Description of donors used in the study.

subjects group 1, 
healthy 

volunteers 
(hVs)

group 2, 
hVs (asa 

300 mg/day 
per os)

group 3, 
high-risk 

thrombosis 
patients

group 4, high-
risk thrombosis 
patients (asa 
100 mg/day/ 

per os)

Total number 10 10 10 10
Male/female 6/4 6/4 7/3 7/3
Age range 25–55 25–55 58–75 58–75
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model of thrombosis (FeCl3-induced), demonstrated that PLT-
derived HMGB1 promotes PLT aggregation and small vessel 
thrombosis (6).

High-mobility group box 1 is a nuclear protein that is also 
active in the cytoplasm and in the extracellular space. It has 
recently been shown that when HMGB1 relocalizes from the 
nucleus to the cytoplasm, it is acetylated and mostly reduced, 
while when it is secreted by immune cells is acetylated. After 
release in the extracellular medium, cysteines C23 and C45 of 
HMGB1 can form a disulfide bond (7, 8). Disulfide HMGB1 is 
recognized by surface and intracellular TLRs. Further oxida-
tion of cysteines to sulphonates inactivates HMGB1. However, 
its most interesting binding partner is receptor for advanced 
glycation end products (RAGE), which is bound by differ-
ent ligands that trigger inflammatory states. RAGE is a type I 
transmembrane protein and a member of the immunoglobulin 
superfamily, it is increasingly expressed when potential ligands 
such as HMGB1 or inflammatory mediators are expressed, e.g., 
in cardiovascular disease, diabetes, and cancer (9–11). RAGE-
dependent mechanisms have also been hypothesized to mediate 
PLT activation (12).

Furthermore, it has been demonstrated that PLT activa-
tion increases RAGE surface expression and that RAGE binds 
HMGB1 released in thrombi by endothelial cells and leukocytes. 
Thus, HMGB1–RAGE interaction is central in the pathogen-
esis of atherothrombosis. This suggests that the HMGB1–RAGE 
pathway should be targeted in prevention and therapy of vascular 
damage in thrombosis disease (13, 14).

Aspirin is known to permanently inhibit COX-1 in mature 
PLTs and in MKs. For this reason, low dosages of aspirin 
(100 mg) are administered daily in order to prevent thrombo-
sis. The fact that 10–15% of PLTs are renewed daily but only 
3 or 4% of circulating PLTs show COX-1 function suggests 
that low doses of aspirin administered once a day function on 
PLT progenitors (15). As well as acting on COX-1, aspirin has 
been shown to influence megakaryocytic gene expression, by 
activating nuclear factor PPARα that consequently upregulates 
multidrug resistance protein 4 in human PLTs (15). Other 
authors have demonstrated that aspirin induces over-expression 
of GP3A (16) and a complex of genes named “aspirin response 
signature” (17).

More recently, aspirin (or its de-acetylated derivative, salicylic 
acid) has been shown to bind HMGB1 and inhibit its activities 
(18). Extracellular HMGB1 induces the transcription of Ptgs2, the 
gene coding for COX-2, and salicylic acids inhibits such induc-
tion. Salicylic acid has been hypothesized to be anti-tumorigenic 
in mesothelioma and in colon cancer (19).

A modulation of HMGB1 expression induced by aspirin 
could represent another mechanism contributing to the anti-PLT 
effects of the drug.

The aim of this study is to investigate whether HMGB1 has a 
role in the biogenesis of PLTs and whether it could be influenced 
by aspirin.

Aspirin effects on HMGB1 expression and release were stud-
ied in a human megakaryoblastic cell line (DAMI cells), in PLTs 
obtained from healthy volunteers (HVs) and from patients with 
high-thrombotic risk.

MaTerials anD MeThODs

cell cultures
DAMI cells were maintained in RPMI 1640 medium supplemented 
with 10% fetal calf serum, penicillin G sodium (100 U/ml) and 
streptomycin sulfate (0.1 mg/ml), in a humidified atmosphere (5% 
CO2, 37°C). DAMI cell differentiation was induced with 1 mM 
phorbol myristate acetate and 10 ng/ml thrombopoietin (TPO) 
for 7 days, and cells were cultured for four more days without 
stimulation (20). Where required, at day 6 of differentiation, cells 
were treated with 50 µM aspirin (Sigma) for 4 days.

human hematopoietic Progenitor cell 
(hPc) Purification
Adult peripheral blood (PB) was obtained from 20- to 40-year-
old male donors after written informed consent. Low-density 
mononuclear cells (in average 0.1%) were isolated by Ficoll–
Hypaque (Lympholyte CL5020, Cederlane Lab., Canada) den-
sity gradient (1.077  g/ml) centrifugation at 600  g for 30  min, 
RT. CD34+ cells were purified by using the MiniMACS isolation 
system (Milteny, Bergisch, Gladbach, Germany) according to 
the manufacturer’s instructions. Purified cells were more than 
90% CD34+ (as evaluated by cytofluorimeter, Epics Profile) and 
were cultured in serum-free FCS unilineage MK liquid culture 
(20), with addition of 100 ng/ml TPO alone or in combination 
with 50  µM aspirin. Aspirin treatment started from day 6 of 
culture and continued for the following 4 days. Cultures were 
maintained for 14 days in a humidified atmosphere (5% CO2, 
37°C). MKs were collected, counted, and analyzed for viability 
and morphology at different days of differentiation (7, 9, and 
14). PLTs, obtained at the end of the culture, were isolated from 
supernatants by centrifugation at 800  g for 10  min at room 
temperature. Supernatants were centrifuged a second time at 
14,000 g for 10 min in order to remove debris and were kept at 
−20°C before ELISA tests.

PlT Preparation and isolation
Donors were divided into four groups as summarized in Table 1. 
10 HVs (group 1), 10 HVs who were administered 300 mg/day 
aspirin (group 2), 10 high-cardiovascular risk patients (group 3), 
and 10 high-cardiovascular risk patients who were under therapy 
with aspirin (100 mg per os for at least 3 months) (group 4). This 
study was carried out in accordance with the recommendations 
and approval of the ethical committee of Policlinico Umberto 
I-University of Rome Sapienza with written informed consent 
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FigUre 1 | HMGB1 and RAGE expression in undifferentiated DAMI cells (T0) and in DAMI cells at day 11 of differentiation treated or not with aspirin (50 µM).  
The expression level of HMGB1 (28–30 kDa) and RAGE (43 kDa) was detected by western blotting in whole cell lysates. Results are representative of three different 
experiments. Statistical differences were evaluated by Student’s t-test.
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from all subjects. All subjects gave written informed consent in 
accordance with the Declaration of Helsinki.

Platelets, microvesicles (MV) extracted from plasma, serum, 
and platelet-free plasma, were obtained from each donor. Blood 
samples were centrifuged at 200 g for 15 min and platelet rich 
plasma (PRP) was collected. ACD (39  mM citric acid, 75  mM 
sodium citrate, and 135 mM dextrose) was added to PRP, in order 
to avoid PLT aggregation. This was then centrifuged at 1,000 g 
for 10  min to remove plasma. Pellets containing PLTs were 
resuspended in ACD buffer with EDTA (5 mM) and then filtered 
through a 5-µm filter to remove leukocyte contaminants (21, 22).

Supernatants (PPP) obtained after centrifugation of PRP were 
centrifuged again at 20,000 g for 10 min to obtain MV. Pellets were 
used for western blot. Supernatants were used for ELISA tests.

Flow cytometry analysis of cell  
surface antigens
The phenotype of differentiating MKs and PLTs was analyzed 
using FITC or PE conjugated monoclonal antibodies anti-CD34 
(Becton Dickinson) and anti-CD61 (BioLegend). Cells were 
incubated with antibody (diluted 1:100 for 15 min), washed with 
PBS, and analyzed in a cytofluorimeter (Epics XL–MCL Coulter).

mrna extraction and rT-Pcr
Total RNA from human cell lines, MKs, and human PLTs was 
extracted using TRizol reagent (Invitrogen, San Diego, CA, USA). 
For mRNA detection, 1 µg of total RNA was transcribed using 

the GeneAmp Gold RNA PCR reagent kit pAW109 (Applied 
Biosystems, Warrington, UK). mRNA expression was analyzed 
with Q-RT-PCR using TaqMan Master Mix and TaqMan assay 
reagents (Applied Biosystems). PCR conditions were as follows: 
50°C for 2  min and 95°C for 10  min, followed by 40 cycles of 
95°C for 15  s and 60°C for 1  min. Amplification was carried 
out in triplicate. β-actin mRNA was used for normalization.  
A negative control (no cDNA) was used to confirm the absence 
of amplification.

Protein extraction and Western Blot
Cell pellets were resuspended in lysis buffer [RIPA buffer: 10 mM 
Tris–HCl (pH 7.6), 160  mM NaCl, 1  mM EGTA, 1% deoxy-
cholic acid, 1%Triton, and 0.1% SDS] with protease inhibitors, 
incubated on ice for 30  min and then centrifuged at 12,000  g 
for 30 min; supernatants were collected. Whole cell lysates were 
heat denatured for 5 min and separated on 10% SDS-PAGE gels, 
run on ice at 40 V (for the stacking gel) and 80 V (for the run-
ning gel). Proteins were transferred onto a previously activated 
PVDF membrane (Bio-Rad, Hercules). Membranes were then 
placed in TBS-T and 5% albumin for 1 h and probed overnight 
with the specific antibody at 4°C. At the end of incubation, 
membranes were washed and incubated with anti-mouse IgG 
peroxidase conjugated secondary antibody (1:10,000) for 1 h at 
room temperature. Membranes were stripped and incubated with 
anti-actin monoclonal antibody (Sigma) as a loading control. 
Signal was detected by autoradiography (Kodak Biomax) using 
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FigUre 3 | HMGB1 and RAGE localization in undifferentiated (T0) or 
differentiated DAMI cell treated or not with aspirin. HMGB1 (green) and RAGE 
(red) localization were detected by confocal analysis. Upper left: untreated 
proliferating DAMI cells showing a patchy distribution of RAGE (red) on the 
plasmamembrane and nuclear localization of HMGB1 (green). Upper right: 
proliferating DAMI cells treated with 50 µM ASA. Note the redistribution of 
RAGE, which accumulates in the cytosol as pointed by the arrows. Lower 
left: day 11, DAMI cells showing some co-localization of HMGB1 and RAGE 
on the plasmamembrane (arrows). Lower right: DAMI cells treated with 
50 µM ASA do not show co-localization of HMGB1 and RAGE, and have a 
diffused distribution of RAGE.

FigUre 2 | HMGB1 and RAGE localization in DAMI cells: from 
undifferentiated (T0) to fully differentiated. HMGB1 (green) and RAGE (red) 
localization were detected by confocal analysis. Upper left: untreated DAMI 
cells showing patchy distribution of RAGE on the plasmamembrane (arrows) 
and nuclear and cytosolic distribution of HMGB1. At day 11, DAMI cells 
show patched co-localization of HMGB1 and RAGE as indicated by the 
arrows. At day 13, cells show diffuse co-localization of HMGB1 and RAGE 
(white arrows).
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the chemiluminescent peroxidase substrate kit (Sigma) and then 
quantified by densitometry (Bio-Rad).

immunofluorescence and confocal 
Microscopy
For immunofluorescence, cells were spotted on a glass slide, 
fixed with 4% paraformaldehyde in PBS for 30  min, washed 
with 0.1 M glycine for 20 min, and permeabilized in 0.1% Triton 
X-100 for an additional 5  min. Nuclei of MKs were stained 
with Sytox green Nucleic Acid stain (Invitrogen), according to 
manufacturer’s instructions. Primary antibodies (anti-RAGE or 
anti-HMGB1) were diluted according to manufacturer’s instruc-
tions and added on spots for 45 min, then slides were washed 
and secondary antibodies (PE- or FITC-labeled anti-IgG) were 
added for 30  min. At the end, slides were washed with PBS, 
mounted with coverslips, and kept at 4°C until imaging with 
confocal microscopy (Zeiss LSM-510).

statistics
All statistical analysis was carried out using KaleidaGraph ver-
sion 4.5.1 (Synergy Software Inc., Reading, PA, USA). Data are 
expressed as means  ±  SD. The differences between differently 
treated cell populations were analyzed using Student’s t-test. 
Differences among groups were determined by using one-way 

ANOVA and Dunnet post hoc test. p < 0.05 was considered to 
indicate a statistically significant difference.

resUlTs

hMgB1 expression is Modulated  
by aspirin in DaMi cells
High-mobility group box 1 and RAGE expression were first 
investigated in DAMI cells during their differentiation to PLTs. 
In order to evaluate whether aspirin affect HMGB1 and RAGE 
expression, we also treated undifferentiated and differentiated 
DAMI cells with aspirin. As shown in Figure  1, DAMI cells 
express HMGB1 and treatment with 50  µM aspirin slightly 
reduced its expression in both undifferentiated (T0) and dif-
ferentiated cells (day 11).

Receptor for advanced glycation end products was constantly 
expressed in DAMI cells at the different stages of differentiation 
(Figure 1) and treatment with aspirin did not induce any signifi-
cant effect.
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FigUre 4 | mRNA expression in cultures of megakaryocytes, obtained from 
peripheral-blood precursors (HPCs) and induced to differentiate in multiwell 
plates. At day 6 of culture 50 µM aspirin (+ASA) was added for the following 
4 days. RT-PCR was performed at days 9 and 14. Statistical differences were 
evaluated by Student’s t-test.
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Cellular localization of HMGB1 and RAGE was studied using 
confocal microscopy. Undifferentiated cells show nuclear and 
cytosolic localization of HMGB1 whereas RAGE is localized in 
the plasmamembrane (Figure 2, upper left). Interestingly a large 
number of undifferentiated DAMI cells show a patchy distribu-
tion of RAGE on the plasmamembrane, as shown by the arrows 
in Figure 2. In differentiating DAMI cells, at day 7 localization 
of HMGB1 and RAGE was similar to that in T0 cells, and RAGE 
was distinctly patchy (Figure  2, upper right). However, as dif-
ferentiation proceeded, at day 11 there was an increased plasma-
membrane co-localization of HMGB1 and RAGE (yellow spots, 
see the arrows in Figure 2, lower left). Finally, after 13 days of dif-
ferentiation, there was a clear redistribution and co-localization 
of HMGB1 and RAGE which was both diffused in the cytoplasm 
and patched on the plasmamembrane (see the arrows in Figure 2, 
lower right). When undifferentiated DAMI cells were treated with 
ASA, we observed a redistribution of both RAGE and HMGB1; 
RAGE was more intracellular (see the arrows in Figure 3, upper 
right). Differentiated DAMI cells under ASA treatment at day 
11 maintained a widespread distribution of both HMGB1 and 
RAGE. Moreover, we did not observe co-localization of HMGB1 
and RAGE as in untreated cells (see Figure 3, lower right).

hMgB1 expression is Modulated by 
aspirin in human MKs
In order to examine whether aspirin could modulate HMGB1 
expression in human MKs, we studied the effects of aspirin in 
peripheral-blood progenitor cell cultures during maturation 
along the MK lineage (19). Aspirin (50  µM) was added at day 

6 to differentiating MKs (when most cells are precursors) and 
incubation was continued for 4 days. The results (Figure 4) show 
that mRNA for HMGB1 is expressed at the different stages of 
differentiation (days 9 and 14). Treatment with ASA decreases 
mRNA expression until, on day 14 of differentiation, it became 
undetectable.

Figure 5 shows expression of HMGB1 and RAGE proteins in 
differentiating MKs collected at days 9, 12, and 14 and in their 
derived PLTs, treated or not with aspirin.

At day 9 of in  vitro maturation, MKs begin to produce 
PLTs CD61+ (see the cytofluorimetric analysis in Figure S1 in 
Supplementary Material). Interestingly (Figure  5A), HMGB1 
is decreasingly expressed in MKs during days 9, 12, and 14 of 
maturation, while at the same time it starts appearing in the 
newly formed PLTs. This means that HMGB1 is distributed into 
the future PLTs by the progenitors. The more cells progress into 
the maturation and get close to the production of PLTs, the more 
HMGB1 is moved from the cell nucleus to the periphery of the 
cells (shown in Figure S2 in Supplementary Material) and into 
their derived PLTs. Treatment with aspirin decreases the amount 
of HMGB1 in MKs, while it slightly increases it in the PLTs 
(Figures  5A,B). This slight increase of HMGB1 expression in 
the new PLTs is not followed by a higher amount of free protein 
released in supernatants as detected by ELISA and shown in 
Table  2. RAGE expression followed the same trend of expres-
sion as HMGB1 in MKs while it markedly decreased in PLTs 
obtained from cultures treated with aspirin for 12 and 14 days 
(Figures 5C,D).

hMgB1 expression in PlTs Obtained from 
high-atherothrombotic risk Patients
To investigate whether aspirin could regulate HMGB1 expression 
and secretion in vivo, we studied the content of HMGB1 in PLTs, 
MV, plasma, and in sera from high-risk thrombosis patients 
treated or not with aspirin (groups 3 and 4).

Representative western blots regarding expression of HMGB1 
in PLTs and in MV are shown in Figure 6. There is a decrease of 
expression of HMGB1 in both PLTs and MV from patients under 
aspirin treatment (100  mg/day for at least 3  months). Table  3 
shows the concentration of soluble HMGB1 in plasma and sera 
from the same patients. There is a correspondence between 
western blots of PLTs, MV, and free protein measured in plasma 
and sera from the same subjects.

Interestingly, as shown in Table 3, there is a higher expression 
of HMGB1 in sera than in plasma due to the activation of PLTs 
during clot formation, with release of HMGB1.

hMgB1 mrna expression in PlTs 
Obtained from hVs
In order to find out whether in vivo treatment with aspirin had an 
effect on the mRNA content of HMGB1 in PLTs, we studied the 
mRNA expression in a group of HVs before and after 300 mg/day 
aspirin for up to 15 days. As shown in Figure 7, there is a decrease 
of expression at day 7, which is followed by a small increase when 
treatment is prolonged for 15  days, well under the levels before 
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FigUre 5 | High-mobility group box 1 (HMGB1) (a,B) and receptor for advanced glycation end products (RAGE) (c,D) expression in megakaryocytes (MKs) 
obtained from peripheral HPCs and induced to differentiate as described in Section “Materials and Methods.” Platelets (PLT) were obtained at days 12 and 14 of 
differentiation (a–D). 50 µM aspirin was added to cultures at day 6, for 4 days (B,D). Results are representative of three different experiments. Statistical differences 
were evaluated by one-way ANOVA test and Dunnet post hoc analysis in MKs + ASA versus MKs and PLT + ASA versus PLT (p-values are indicated where 
statistically significant).
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TaBle 2 | Content of high-mobility group box 1 (ng/ml) in supernatants from 
megakaryocytes (MKs) detected by ELISA.

 Day of maturation and treatment supernatants

MK day 9 18.25 ± 0.3

MK day 9 + ASA 17.45 ± 0.2

MK day 12 19.45 ± 0.2

MK day 12 + ASA 18.02 ± 0.3

MK day 14 22.19 ± 0.2

MK day 14 + ASA 20.13 ± 0.3

Each value is the mean ± SD ng/ml of three determinations in three different 
experiments performed on different days. Supernatants were obtained from MKs 
from HPC at day 9 or 12 of maturation, treated or not with aspirin (see Materials and 
Methods).

aspirin administration. This means that in  vivo treatment with 
aspirin regulates HMGB1-expression and disposition into PLTs at 
the megakaryocytic level.

DiscUssiOn

In the present study, we investigated the expression of HMGB1 
and RAGE and their modulation by aspirin in MKs, obtained 
from PB HPC and in a megakaryoblastic cell line, DAMI, which 
has proved to be a good model for the study of megakaryocytic 
differentiation (23). In particular, we have shown that aspirin, 
during in vitro differentiation of DAMI cells directs the move-
ment of HMGB1 from nucleus to cytoplasm: in undifferentiated 
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FigUre 6 | Expression of high-mobility group box 1 (HMGB1) in platelets 
(PLT) and PLT-derived microvesicles (MV) obtained from high-
atherothrombotic risk patients treated or not with ASA (100 mg/die per os). 
Representative western blot. Statistical differences were evaluated by 
Student’s t-test.

TaBle 3 | Content of high-mobility group box 1 (HMGB1) (ng/ml) detected by 
ELISA.

hMgB1 nanograms  
per milliliter (detected  

by elisa)

Plasma from high-risk thrombosis patients (group 3) 0.32 ± 0.2
Serum (group 3) 1.27 ± 0.2
Plasma from HRP in treatment with ASA (group 4) 0.18 ± 0.3
Serum (group 4) 0.41 ± 0.4

Each value is the mean ± SD ng/ml of three different determinations performed in 
plasma and serum obtained from patients described in Table 1.

cells HMGB1 is mostly in the nucleus and, during differentiation 
it is in the cytoplasm, gets closer to the plasma membrane and we 
suggest is expressed in the buds that would probably give rise to 
new PLTs. Yamashita et al. (24) analyzed thrombi from patients 
with coronary thrombosis and found that HMGB1 was closely 
localized with PLTs. They also suggest that increased serum levels 
of HMGB1 in patients with type 2 diabetes mellitus is due to 
impaired release of HMGB1 from leukocytes. We are suggesting 
here that PLTs are provided with HMGB1 by their progenitors 
and that PLTs are the major source of HMGB1 in thrombi because 
they are also provided by MKs with mRNA HMGB1. PLTs have a 
dual role: initiate blood clotting and start inflammation. HMGB1 

FigUre 7 | High-mobility group box 1 (HMGB1) mRNA expression in 
platelets from 10 volunteer subjects, before treatment (healthy volunteers 
CTRL), and after aspirin treatment (300 mg/die) for 7 and 15 days. Statistical 
differences were evaluated by one-way ANOVA and Dunnet post hoc analysis.

is one of the molecules that links both PLT functions. Since the 
major inhibitor of PLT functions is aspirin, we are suggesting here 
that aspirin is able to modulate HMGB1 expression on MKs and 
in their derived PLTs.

Aspirin pharmacokinetics and pharmacodynamics in  vivo 
depend on gastro intestinal absorption and on the life span of 
PLTs and MKs. A recent model on anti-PLT pharmacodynam-
ics of low-dose aspirin in humans (18) has suggested that a 
faster recovery of COX-1 activity in PLTs could be obtained by 
shortening the interval of administration and not by increasing 
the dose. In the present study, therapeutic doses of aspirin were 
administered to patients (100 mg/die) and HVs (300 mg/die), so 
the range of plasma levels of aspirin was between 15 and 50 µM.

Aspirin induces similar effects in human MKs obtained 
from HPC during their “in vitro” maturation: HMGB1 mRNA 
decreased from day 7 of differentiation in ASA-treated cells 
until it became undetectable at day 14. It is interesting to note 
that, as with DAMI cells during differentiation, cellular content 
of HMGB1 protein also decreased. This suggests, that HMGB1 
is synthesized at the initial stages of cell differentiation and that 
most of it is then distributed into PLTs and then again from 
PLTs into PLT-derived MV. Recent studies (25) demonstrated 
that PLT-derived exosomes contain HMGB1 among α-granule 
markers and more interestingly, this content is decreased by 
consumption of low-dose aspirin daily for 1 week.

Having shown that aspirin plays a role in the expression and 
transport of HMGB1 from MKs into PLTs, we investigated the 
effects of oral treatment with aspirin in young, HVs, and older 
cardiovascular risk patients and demonstrated that aspirin is 
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events (31). The study presented here concerned RAGE when 
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