14 research outputs found

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses

    Schistosomiasis in the People's Republic of China: Prospects and Challenges for the 21st Century

    No full text
    Schistosomiasis japonica is a serious communicable disease and a major disease risk for more than 30 million people living in the tropical and subtropical zones of China. Infection remains a major public health concern despite 45 years of intensive control efforts. It is estimated that 865,000 people and 100,250 bovines are today infected in the provinces where the disease is endemic, and its transmission continues. Unlike the other schistosome species known to infect humans, the oriental schistosome, Schistosoma japonicum, is a true zoonotic organism, with a range of mammalian reservoirs, making control efforts extremely difficult. Clinical features of schistosomiasis range from fever, headache, and lethargy to severe fibro-obstructive pathology leading to portal hypertension, ascites, and hepatosplenomegaly, which can cause premature death. Infected children are stunted and have cognitive defects impairing memory and learning ability. Current control programs are heavily based on community chemotherapy with a single dose of the drug praziquantel, but vaccines (for use in bovines and humans) in combination with other control strategies are needed to make elimination of the disease possible. In this article, we provide an overview of the biology, epidemiology, clinical features, and prospects for control of oriental schistosomiasis in the People's Republic of China
    corecore