15 research outputs found

    Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes

    Get PDF
    Hypofractionated radiotherapy is the mainstay of the current treatment for glioblastoma. However, the efficacy of radiotherapy is hindered by the high degree of radioresistance associated with glioma stem cells comprising a heterogeneous compartment of cell lineages differing in their phenotypic characteristics, molecular signatures, and biological responses to external signals. Reconstruction of radiation responses in glioma stem cells is necessary for understanding the biological and molecular determinants of glioblastoma radioresistance. To date, there is a paucity of information on the longitudinal outcomes of hypofractionated radiation in glioma stem cells. This study addresses long-term outcomes of hypofractionated radiation in human glioma stem cells by using a combinatorial approach integrating parallel assessments of the tumor-propagating capacity, stemness-associated properties, and array-based profiling of gene expression. The study reveals a broad spectrum of changes in the tumor-propagating capacity of glioma stem cells after radiation and finds association with proliferative changes at the onset of differentiation. Evidence is provided that parallel transcriptomic patterns and a cumulative impact of pathways involved in the regulation of apoptosis, neural differentiation, and cell proliferation underly similarities in tumorigenicity changes after radiation

    In vitro studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the majority of prostate cancers (PC) express estrogen receptors, we evaluated the combination of radiation and estrogenic stimulation (estrogen and genistein) on the radiosensitivity of PC cells in vitro.</p> <p>Methods</p> <p>PC cells LNCaP (androgen-sensitive) and PC-3 (androgen-independent) were evaluated. Estrogen receptor (ER) expression was analyzed by means of immunostaining. Cells were incubated in FCS-free media with genistein 10 μM and estradiol 10 μM 24 h before irradiation and up to 24 h after irradiation. Clonogenic survival, cell cycle changes, and expression of p21 were assessed.</p> <p>Results</p> <p>LNCaP expressed both ER-α and ER-β, PC-3 did not. Incubation of LNCaP and PC-3 with genistein resulted in a significant reduction of clonogenic survival. Incubation with estradiol exhibited in low concentrations (0.01 μM) stimulatory effects, while higher concentrations did not influence survival. Both genistein 10 μM and estradiol 10 μM increased low-dose hyper-radiosensitivity [HRS] in LNCaP, while hormonal incubation abolished HRS in PC-3. In LNCaP cells hormonal stimulation inhibited p21 induction after irradiation with 4 Gy. In PC-3 cells, the proportion of cells in G2/M was increased after irradiation with 4 Gy.</p> <p>Conclusion</p> <p>We found an increased HRS to low irradiation doses after incubation with estradiol or genistein in ER-α and ER-β positive LNCaP cells. This is of high clinical interest, as this tumor model reflects a locally advanced, androgen dependent PC. In contrast, in ER-α and ER-β negative PC-3 cells we observed an abolishing of the HRS to low irradiation doses by hormonal stimulation. The effects of both tested compounds on survival were ER and p53 independent. Since genistein and estradiol effects in both cell lines were comparable, neither ER- nor p53-expression seemed to play a role in the linked signalling. Nevertheless both compounds targeted the same molecular switch. To identify the underlying molecular mechanisms, further studies are needed.</p

    Human papilloma virus load and PD-1/PD-L1, CD8(+) and FOXP3 in anal cancer patients treated with chemoradiotherapy: Rationale for immunotherapy

    No full text
    We examined the prognostic role of immune markers programmed cell death protein-1 (PD-1) and its ligand (PD-L1), CD8(+) tumor-infiltrating lymphocytes (TILs), FOXP3+ Tregs and phosphorylated Caspase-8 (T273) in patients with anal squamous cell cancer (ASCC) treated with standard chemoradiotherapy (CRT). The baseline immunohistochemical expression of immune markers was correlated with clinicopathologic characteristics, and cumulative incidence of local failure, disease-free survival (DFS) and overall survival (OS) in 150 patients, also in the context of human papilloma virus 16 (HPV16) DNA load and p16(INK4a) expression. After a median follow-up of 40 mo (1-205 mo), the 5-y cumulative incidence of local failure and DFS was 19.4% and 67.2%, respectively. Strong immune marker expression was significantly more common in tumors with high HPV16 viral load. In multivariant analysis, high CD8(+) and PD-1+ TILs expression predicted for improved local control (p = 0.023 and p = 0.007, respectively) and DFS (p = 0.020 and p = 0.014, respectively). Also, high p16(INK4a) (p = 0.011) and PD-L1 (p = 0.033) expression predicted for better local control, whereas high FOXP3+ Tregs (p = 0.050) and phosphorylated Caspase- 8 (p = 0.031) expression correlated with superior DFS. Female sex and high HPV16 viral load correlated with favorable outcome for all three clinical endpoints. The present data provide, for the first time, robust explanation for the favorable clinical outcome of HPV16-positive ASCC patients harboring strong immune cell infiltration. Our findings are relevant for treatment stratification with immune PD-1/PD-L1 checkpoint inhibitors to complement CRT and should be explored in a clinical trial

    Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy

    No full text
    Background: RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signalling pathway and its deregulation is involved in the pathogenesis of several tumour entities. RITA's impact on the response of anal squamous cell carcinoma (SCC) to anticancer treatment, however, remains elusive. Materials and methods: In our retrospective study immunohistochemical evaluation of RITA was performed on 140 pre-treatment specimens and was correlated with clinical and histopathologic characteristics and clinical endpoints cumulative incidence of local control (LC), distant recurrence (DC), disease-free survival (DFS) and overall survival (OS). Results: We observed significant inverse correlations between RITA expression and tumour grading, the levels of HPV-16 virus DNA load, CD8 (+) tumour infiltrating lymphocytes and programmed death protein (PD-1) immunostaining. In univariate analyses, elevated levels of RITA expression were predictive for decreased local control (p = 0.001), decreased distant control (p = 0.040), decreased disease free survival (p = 0.001) and overall survival (p < 0.0001), whereas in multivariate analyses RITA expression remained significant for decreased local control (p = 0.009), disease free survival (p = 0.032) and overall survival (p = 0.012). Conclusion: These data indicate that elevated levels of pretreatment RITA expression are correlated with unfavourable clinical outcome in anal carcinoma treated with concomitant chemoradiotherapy. (C) 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 126 (2018) 214-22

    Studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol-3

    No full text
    To fit the low-dose hyper-radiosensitivity region of all curves. Incubation with genistein 10 μM and estradiol 10 μM enlarged the area of radiohypersensitivity to doses of up to 1 Gy when compared to untreated controls. p-values for LNCaP control vs. genistein 10 μM were p < 0.05 at the following dose points: 0.4 Gy, 0.5 Gy, 0.6 Gy, 0.8 Gy, 1 Gy. No significant differences were found between the clonogenic survival curves at 0 Gy, 0.2 Gy, 2 Gy, 3 Gy and 4 Gy. p-values for LNCaP controls vs. estradiol 10 μM were p < 0.05 at the following dose points: 0.4 Gy, 0.6 Gy, 0.8 Gy, 1 Gy and 3 Gy. No significant differences were found at 0 Gy, 0.5 Gy, 2 Gy and 4 Gy.<p><b>Copyright information:</b></p><p>Taken from "studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol"</p><p>http://www.ro-journal.com/content/3/1/19</p><p>Radiation Oncology (London, England) 2008;3():19-19.</p><p>Published online 14 Jul 2008</p><p>PMCID:PMC2490684.</p><p></p

    Studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol-0

    No full text
    Oma cell line that expresses both ER-α and ER-β, whereas BG-1 is an ovarian cell that does not express these receptors. Expression of the receptors reflects a brown staining. For easier analysis, staining of the nuclei with DAB was not performed in the presented samples of LNCaP and PC-3. While LNCaP cells showed expression of ER-α and ER-β, PC-3 cells did not.<p><b>Copyright information:</b></p><p>Taken from "studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol"</p><p>http://www.ro-journal.com/content/3/1/19</p><p>Radiation Oncology (London, England) 2008;3():19-19.</p><p>Published online 14 Jul 2008</p><p>PMCID:PMC2490684.</p><p></p

    Studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol-6

    No full text
    Ignated probes were irradiated with 4 Gy. In the following time, every 6 h probes were stained with DAPI and analyzed in a flow cytometer up to point "72 h". Every result reflects 3 independent assays. Proportion of cells in G0/G1 is symbolised by a bar, G2/M by a white bar and S-phase by a black bar. In the controls 15% of the cells were in S-phase, 65% in G0/G1 and 20% in G2/M. In the following, the S-phase was reduced to 5%, while G0/G1 increased to 73%. The proportion of cells in G2/M showed minimal changes. After incubation with genistein 10 μM no significant differences when compared to untreated controls were observed. After irradiation with 4 Gy the proportion of cells in G0/G1 decreased from 73% to 62%, in S-phase decreased from 8% to 3.6% and in G2/M phase increased from 21% to 34.3%. Similar results were observed after incubation with genistein 10 μM and irradiation with 4 Gy. In the controls 15% of the cells were in S-phase, 65% in G0/G1 and 20% in G2/M. In the following, the S-phase was reduced to 5%, while G0/G1 increased to 73%. The proportion of cells in G2/M was only minimal changes. After incubation with genistein 10 μM no significant differences when compared to untreated controls were observed. After irradiation with 4 Gy the proportion of cells in G0/G1 decreased from 73% to 62%, in S-phase decreased from 8% to 3.6% and in G2/M phase increased from 21% to 34.3%. Similar results were observed after incubation with genistein 10 μM and irradiation with 4 Gy.<p><b>Copyright information:</b></p><p>Taken from "studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol"</p><p>http://www.ro-journal.com/content/3/1/19</p><p>Radiation Oncology (London, England) 2008;3():19-19.</p><p>Published online 14 Jul 2008</p><p>PMCID:PMC2490684.</p><p></p

    Studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol-7

    No full text
    Oma cell line that expresses both ER-α and ER-β, whereas BG-1 is an ovarian cell that does not express these receptors. Expression of the receptors reflects a brown staining. For easier analysis, staining of the nuclei with DAB was not performed in the presented samples of LNCaP and PC-3. While LNCaP cells showed expression of ER-α and ER-β, PC-3 cells did not.<p><b>Copyright information:</b></p><p>Taken from "studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol"</p><p>http://www.ro-journal.com/content/3/1/19</p><p>Radiation Oncology (London, England) 2008;3():19-19.</p><p>Published online 14 Jul 2008</p><p>PMCID:PMC2490684.</p><p></p
    corecore