18 research outputs found

    DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues

    Get PDF
    Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice

    Parathyroid carcinoma in a child

    No full text
    Parathyroid carcinoma is a rare cause of hypercalcemia in children but should be considered in a child presenting with an extremely elevated serum calcium level. The authors report the fifth case of parathyroid carcinoma in a child less than 16 years of age

    Conformal Radiation Therapy for Pediatric Patients with Low-Grade Glioma: Results from the Children\u27s Oncology Group Phase 2 Study ACNS0221

    No full text
    Purpose: To determine the rate of marginal relapse, progression-free survival (PFS), and overall survival (OS) in patients with pediatric low-grade glioma (PLGG) treated with conformal radiation therapy (CRT) with a clinical target volume (CTV) margin of 5 mm in the Children\u27s Oncology Group trial ACNS0221. Methods and Materials: Patients aged 3 to 21 years with unresectable progressive, recurrent, or residual PLGG were eligible for this study. Patients younger than 10 years were required to have received at least 1 chemotherapy course. Patients with neurofibromatosis type I were not eligible. All patients underwent magnetic resonance imaging-based planning and received 54 Gy CRT in 30 fractions with a 5-mm CTV margin. Results: Of 85 eligible patients (median age, 13.6 years) treated between March 2006 and December 2010, 14 were younger than 10 years and 36 received prior chemotherapy. Sixty-six had pilocytic astrocytoma, 15 had other histologic subtypes, and 4 had unbiopsied chiasmatic lesions. Events included 23 relapses (19 central, 4 distant, and no marginal) and 7 deaths. At a median follow-up of 5.15 years, 5-year PFS was 71% ± 6% and OS was 93% ± 4%. Male sex (P =.068) and large tumor size (P =.050) trended toward significance for association with decreased PFS. Age, histology, tumor location, time between diagnosis and study entry, and MIB-1 status were not associated with PFS. OS was negatively associated with male sex (P =.064), non-pilocytic astrocytoma histology (P =.010), and large tumor size (P =.0089). Conclusions: For patients with PLGG, CRT with a CTV margin of 5 mm yields an acceptable PFS and does not lead to a high rate of marginal relapse
    corecore