2 research outputs found

    Patient-Self Inflicted Lung Injury: A Practical Review

    No full text
    Patients with severe lung injury usually have a high respiratory drive, resulting in intense inspiratory effort that may even worsen lung damage by several mechanisms gathered under the name “patient-self inflicted lung injury” (P-SILI). Even though no clinical study has yet demonstrated that a ventilatory strategy to limit the risk of P-SILI can improve the outcome, the concept of P-SILI relies on sound physiological reasoning, an accumulation of clinical observations and some consistent experimental data. In this review, we detail the main pathophysiological mechanisms by which the patient’s respiratory effort could become deleterious: excessive transpulmonary pressure resulting in over-distension; inhomogeneous distribution of transpulmonary pressure variations across the lung leading to cyclic opening/closing of nondependent regions and pendelluft phenomenon; increase in the transvascular pressure favoring the aggravation of pulmonary edema. We also describe potentially harmful patient-ventilator interactions. Finally, we discuss in a practical way how to detect in the clinical setting situations at risk for P-SILI and to what extent this recognition can help personalize the treatment strategy

    Relationship of Extravascular Lung Water and Pulmonary Vascular Permeability to Respiratory Mechanics in Patients with COVID-19-Induced ARDS

    No full text
    International audienceDuring acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS. This is a retrospective observational study from prospectively collected data in a cohort of 107 critically ill patients with COVID-19-induced ARDS from March 2020 to May 2021. We analyzed relationships between variables using repeated measurements correlations. We found no clinically relevant correlations between EVLW and the respiratory mechanics variables (driving pressure (correlation coefficient [CI 95%]: 0.017 [−0.064; 0.098]), plateau pressure (0.123 [0.043; 0.202]), respiratory system compliance (−0.003 [−0.084; 0.079]) or positive end-expiratory pressure (0.203 [0.126; 0.278])). Similarly, there were no relevant correlations between PVPI and these same respiratory mechanics variables (0.051 [−0.131; 0.035], 0.059 [−0.022; 0.140], 0.072 [−0.090; 0.153] and 0.22 [0.141; 0.293], respectively). In a cohort of patients with COVID-19-induced ARDS, EVLW and PVPI values are independent from respiratory system compliance and driving pressure. Optimal monitoring of these patients should combine both respiratory and TPTD variables
    corecore