12 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Amino Acid Deprivation-Induced Autophagy Requires Upregulation of DIRAS3 through Reduction of E2F1 and E2F4 Transcriptional Repression

    No full text
    Failure to cure ovarian cancer relates to the persistence of dormant, drug-resistant cancer cells following surgery and chemotherapy. “Second look” surgery can detect small, poorly vascularized nodules of persistent ovarian cancer in ~50% of patients, where >80% are undergoing autophagy and express DIRAS3. Autophagy is one mechanism by which dormant cancer cells survive in nutrient poor environments. DIRAS3 is a tumor suppressor gene downregulated in >60% of primary ovarian cancers by genetic, epigenetic, transcriptional and post-transcriptional mechanisms, that upon re-expression can induce autophagy and dormancy in a xenograft model of ovarian cancer. We examined the expression of DIRAS3 and autophagy in ovarian cancer cells following nutrient deprivation and the mechanism by which they are upregulated. We have found that DIRAS3 mediates autophagy induced by amino acid starvation, where nutrient sensing by mTOR plays a central role. Withdrawal of amino acids downregulates mTOR, decreases binding of E2F1/4 to the DIRAS3 promoter, upregulates DIRAS3 and induces autophagy. By contrast, acute amino acid deprivation did not affect epigenetic regulation of DIRAS3 or expression of miRNAs that regulate DIRAS3. Under nutrient poor conditions DIRAS3 can be transcriptionally upregulated, inducing autophagy that could sustain dormant ovarian cancer cells

    Amino Acid Deprivation-Induced Autophagy Requires Upregulation of DIRAS3 through Reduction of E2F1 and E2F4 Transcriptional Repression

    No full text
    Failure to cure ovarian cancer relates to the persistence of dormant, drug-resistant cancer cells following surgery and chemotherapy. “Second look” surgery can detect small, poorly vascularized nodules of persistent ovarian cancer in ~50% of patients, where >80% are undergoing autophagy and express DIRAS3. Autophagy is one mechanism by which dormant cancer cells survive in nutrient poor environments. DIRAS3 is a tumor suppressor gene downregulated in >60% of primary ovarian cancers by genetic, epigenetic, transcriptional and post-transcriptional mechanisms, that upon re-expression can induce autophagy and dormancy in a xenograft model of ovarian cancer. We examined the expression of DIRAS3 and autophagy in ovarian cancer cells following nutrient deprivation and the mechanism by which they are upregulated. We have found that DIRAS3 mediates autophagy induced by amino acid starvation, where nutrient sensing by mTOR plays a central role. Withdrawal of amino acids downregulates mTOR, decreases binding of E2F1/4 to the DIRAS3 promoter, upregulates DIRAS3 and induces autophagy. By contrast, acute amino acid deprivation did not affect epigenetic regulation of DIRAS3 or expression of miRNAs that regulate DIRAS3. Under nutrient poor conditions DIRAS3 can be transcriptionally upregulated, inducing autophagy that could sustain dormant ovarian cancer cells

    DIRAS3-Derived Peptide Inhibits Autophagy in Ovarian Cancer Cells by Binding to Beclin1

    No full text
    Autophagy can protect cancer cells from acute starvation and enhance resistance to chemotherapy. Previously, we reported that autophagy plays a critical role in the survival of dormant, drug resistant ovarian cancer cells using human xenograft models and correlated the up-regulation of autophagy and DIRAS3 expression in clinical samples obtained during “second look„ operations. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kD GTPase with homology to RAS that inhibits cancer cell proliferation and motility. Re-expression of DIRAS3 in ovarian cancer xenografts also induces dormancy and autophagy. DIRAS3 can bind to Beclin1 forming the Autophagy Initiation Complex that triggers autophagosome formation. Both the N-terminus of DIRAS3 (residues 15–33) and the switch II region of DIRAS3 (residues 93–107) interact directly with BECN1. We have identified an autophagy-inhibiting peptide based on the switch II region of DIRAS3 linked to Tat peptide that is taken up by ovarian cancer cells, binds Beclin1 and inhibits starvation-induced DIRAS3-mediated autophagy
    corecore