55 research outputs found

    Constraining the dynamics of volcanic eruptions by characterization of pumice textures

    Get PDF
    We have characterized the textures of pumice clasts from Phlegraean Fields to gain insights into the conduit flow-dynamics of alkaline explosive eruptions. Vesicularities, vesicle number densities, and vesicle sizes and shapes were measured to obtain the bulk and groundmass properties of the juvenile fraction of Campanian Ignimbrite (CI) and Agnano Monte Spina (AMS) eruptions. The results report the coexistence of three end-member pumice types in the deposits of both eruptions, 1) microvesicular, 2) tube and 3) expanded, which differ according to clast morphology and the macro- to microscopic vesicle texture. Vesicularities (0.85-0.94 for CI, 0.51-0.91 for AMS) and vesicle number densities (2-4Ă—105 cm-2 in CI, 3Ă—105-106 cm-2 in AMS) span quite a wide range in all the three pumice types. Overall, tube pumices exhibit the highest bulk (0.89) and groundmass (CI 0.85, AMS 0.82) average vesicle volume fractions but the lowest average vesicle number densities (CI 2Ă—105, AMS 4Ă—105 cm-2). Comparison with textures of calc-alkaline pumices has revealed many similarities and points to a common origin and distribution of the products from both magma compositions within the volcanic conduit. In addition, the results of the textural analysis were interpreted in the light of the conduit flow modeling of Phlegraean Fields eruptions. The comparison of textural observations with results from simulations of conduit magma ascent has exhibited a good agreement between measured and numerically calculated vesicularities for both compositions, helping to constrain the overall dynamics of alkaline versus calc-alkaline eruptions

    A study on the reproducibility of counting vesicles in volcanic rocks

    Get PDF
    Vesicle size distributions in two and three dimensions of two samples were independently measured by three different researchers to investigate whether or not such measurements are reproducible. Additionally, two different software programs were used to measure the three-dimensional vesicle size distributions: the 3D Object Counter plugin for ImageJ and Blob3D. Manual thresholding by each of the authors produced similar results for both samples using both programs; however, use of the automatic, maximum entropy technique for thresholding produced measurably different results because it did not discriminate between vesicles and plagioclase crystals in one case and between vesicles and some cracks in another. Use of asymmetric erosion and dilation processes on the images is shown to affect the vesicle size distribution, but it does not have a significant effect on the power-law exponent that describes intermediate-sized vesicles or on the vesicle number density in these samples. However, such a technique is not recommended

    Magma residence time, ascent rate and eruptive style of the November ash-laden activity during the 2021 Tajogaite eruption (La Palma, Spain)

    Get PDF
    We combined compositional analyses, crystal size distributions and geothermobarometry of tephra erupted during the 2021 Tajogaite eruption (La Palma, Spain), focusing on samples collected in November 2021 associated with a period of abundant ash emission characteristic of the second half of the eruption (from October onwards). Magma erupted in November exhibits a more primitive basanitic composition than the earlier magma. Crystallization temperatures range between ~1100-1160 °C (H2O = 1-3 wt.%) for phenocrysts and microphenocrysts, with corresponding pressures indicating depths from ~10 to ~30 km. Crystal size distribution analysis reveals short (minutes) residence times for plagioclase. Finally, magma ascent velocities (~0.01-0.3 m/s) suggest acceleration and fragmentation in the shallowest part of the conduit. Our results suggest that the trigger of the November explosive activity can be attributed to complex feedback between gas emission rates, changes in conduit geometry, and magma ascent rate

    The importance of pore throats in controlling the permeability of magmatic foams

    Get PDF
    Vesiculation of hydrous melts at 1 atm was studied in situ by synchrotron X-ray tomographic microscopy at the TOMCAT beamline of the Swiss Light Source (Villigen, Switzerland). Water-undersaturated basaltic, andesitic, trachyandesitic, and dacitic glasses were synthesized at high pressures and then laser heated at 1 atm. on the beamline, causing vesiculation. The porosity, bubble number density, size distributions of bubbles, and pore throats, as well as their tortuosity and connectivity, were measured in three-dimensional tomographic reconstructions of sample volumes, which were also used for lattice Boltzmann simulations of viscous permeabilities. Connectivity of bubbles by pore throats varied from ~\u2009100 to 105 mm 123, and for each sample correlated with porosity and permeability. Consideration of the results of this and previous studies of the viscous permeabilities of aphyric and crystal-poor magmatic samples demonstrated that at similar porosities permeability can vary by orders of magnitude, even for similar compositions. Comparison of the permeability relationships from this study with previous models (Degruyter et al., Bull Vulcanol 72:63\u201374, 2010; Burgisser et al., Earth Planet Sci Lett 470:37\u201347, 2017) relating porosity, characteristic pore-throat diameters, and tortuosity demonstrated good agreement. Modifying the Burgisser et al. model by using the maximum pore-throat diameter, instead of the average diameter, as the characteristic diameter reproduced the lattice Boltzmann permeabilities to within 1 order of magnitude. Correlations between average bubble diameters and maximum pore-throat diameters, and between porosity and tortuosity, in our experiments produced relationships that allow application of the modified Burgisser et al. model to predict permeability based only upon the average bubble diameter and porosity. These experimental results are consistent with previous studies suggesting that increasing bubble growth rates result in decreasing permeability of equivalent porosity foams. This effect of growth rate substantially contributes to the multiple orders of magnitude variations in the permeabilities of vesicular magmas at similar porosities

    Eruption dynamics of the 22–23 April 2015 calbuco volcano (Southern Chile): Analyses of tephra fall deposits

    Get PDF
    After 54 years since its last major eruption in 1961, Calbuco Volcano (Ensenada, Southern Chile) reawakened with few hours of warning on 22 April 2015 at 18:05 local time. The main explosive eruption consisted of two eruption pulses (lasting ~1.5 and 6 h each one) on 22 and 23 April, producing stratospheric (>15 km height) eruption columns. The erupted materials correspond to porphyritic basaltic andesite (~55 wt.% of SiO2). The tephra fall affected mainly the area northeast of the volcano and the finest ash was deposited over Southern Chile and Patagonia Argentina. We studied the tephra fall deposits of both pulses in terms of stratigraphy, distribution, volume, emplacement dynamics and eruption source parameters. Here, we show field observations that have been made 5-470 km downwind and distinguish five layers (Layers A, B, B1, C and D) representing different stages of the eruption evolution: eruption onset (Layer A; pulse 1), followed by the first paroxysmal event (Layer B; pulse 1), in some places interbedded by layer B1, tentatively representing the sedimentation of a secondary plume during the end of pulse 1. We recognized a second paroxysm (Layer C; pulse 2) followed by the waning of the eruption (Layer D; pulse 2). The total calculated bulk tephra fall deposit volume is 0.27 ± 0.007 km3 (0.11-0.13 km3 dense rock equivalent), 38% of which was erupted during the first phase and 62% during the second pulse. This eruption was a magnitude 4.45 event (VEI 4 eruption) of subPlinian type.Fil: Romero, J. E.. Universidad de Atacama; ChileFil: Morgavi, D.. Università di Perugia; ItaliaFil: Arzilli, F.. University of Manchester; Reino UnidoFil: Daga, Romina Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Caselli, Alberto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Díaz Alvarado, J.. Universidad de Atacama; ChileFil: Polacci, M.. University of Manchester; Reino UnidoFil: Burton, M.. University of Manchester; Reino UnidoFil: Perugini, D.. Università di Perugia; Itali
    • …
    corecore