608 research outputs found

    A Reconfigurable Impedance Matching Network Employing RF-MEMS Switches

    Get PDF
    We propose the design of a reconfigurable impedance matching network for the lower RF frequency band, based on a developed RF-MEMS technology. The circuit is composed of RF-MEMS ohmic relays, metal-insulator-metal (MIM) capacitors and suspended spiral inductors, all integrated on a high resistivity Silicon substrate. The presented circuit is well-suited for all applications requiring adaptive impedance matching between two in principle unknown cascaded RF-circuits. The fabrication and testing of a monolithic integrated prototype in RF-MEMS technology from ITC-irst is currently underway.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework

    Full text link
    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors (TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators, that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature TcT_c. We developed Ti/TiN multilayer microresonators with TcT_c within the range from 70 mK to 4.5 K and with good uniformity. In this contribution we present the design solutions adopted, the fabrication processes and the characterization results

    Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations

    Get PDF
    In this paper RF MEMS switches in coplanar waveguide (CPW) configuration designed for redundancy space applications have been analyzed, to demonstrate their reliability in terms of microwave performances when subjected to DC actuations up to one million cycles. As a result, both the investigated structures fulfill the current electrical requirements expected for redundancy logic purposes

    A bolometric measurement of the antineutrino mass

    Get PDF
    High statistics calorimetric measurements of the beta spectrum of 187Re are being performed with arrays of silver perrhenate crystals operated at low temperature. After a modification of the experimental set-up, which allowed to substantially reduce the background of spurious counts and therefore to increase the sensitivity on the electron antineutrino mass, a new measurement with 10 silver perrhenate microbolometers is running since July 2002. The crystals have masses between 250 and 350 micrograms and their average FWHM energy resolution, constantly monitored by means of fluorescence X-rays, is of 28.3 eV at the beta end-point. The Kurie plot collected during 4485 hours x mg effective running time has an end-point energy of 2466.1 +/- 0.8{stat} +/- 1.5 {syst} eV, while the half lifetime of the decay is found to be 43.2 +/- 0.2{stat} +/- 0.1{syst} Gy. These values are the most precise obtained so far for 187Re. From the fit of the Kurie plot we can deduce a value for the squared electron antineutrino mass m(nu)^2 of 147 +/- 237{stat} +/- 90{syst} eV^2. The corresponding 90% C.L. upper limit for m(nu) is 21.7 eV.Comment: 3 pages, 3 figures. Submitted to Phys. Rev. Let

    Investigation of charges-driven interactions between graphene and different SiO2 surfaces

    Get PDF
    As being only one atom thick, most of the device applications require graphene to be partially or fully supported by a substrate, which is typically silicon dioxide (SiO2). According to a common understanding, graphene interacts with SiO2 through weak, long-range van der Waals forces, emerging between instantaneous/induced dipoles, in contrast to the experimental evidence that reveals a surprisingly high interaction between graphene and SiO2. In order to get further insight into this phenomenon, we carried out diverse physical measurements on SiO2 substrates, prepared via different fabrication protocols, with and without graphene on top. As a result, the role of the oxide surface charges is recognized for the first time as a main factor causing graphene to strongly interact with SiO2. Our findings provide guidelines for designing 2D materials interaction with a substrate through modulation of surface charges. This, in turn, can facilitate the development of new graphene based microelectronic devices

    Large area Si low-temperature light detectors with Neganov-Luke effect

    Get PDF
    Next generation calorimetric experiments for the search of rare events rely on the detection of tiny amounts of light (of the order of 20 optical photons) to discriminate and reduce background sources and improve sensitivity. Calorimetric detectors are the simplest solution for photon detection at cryogenic (mK) temperatures. The development of silicon based light detectors with enhanced performance thanks to the use of the Neganov-Luke effect is described. The aim of this research line is the production of high performance detectors with industrial-grade reproducibility and reliability.Comment: 4 pages, 2 figure

    The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment

    Full text link
    Neutrino oscillation experiments have proved that neutrinos are massive particles, but can't determine their absolute mass scale. Therefore the neutrino mass is still an open question in elementary particle physics. An international collaboration is growing around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences and technical expertise in a common effort towards this challenging experiment. We discuss the different scenarios and the impact of MARE as a complement of KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11 workshop, Tokyo 200

    RF MEMS ohmic switches for matrix configurations

    Get PDF
    Two different topologies of radio frequency micro-electro-mechanical system (RF MEMS) series ohmic switches (cantilever and clamped–clamped beams) in coplanar waveguide (CPW) configuration have been characterized by means of DC, environmental, and RF measurements. In particular, on-wafer checks have been followed by RF test after vibration, thermal shocks, and temperature cycles. The devices have been manufactured on high resistivity silicon substrates, as building blocks to be implemented in different single-pole 4-throw (SP4 T), double-pole double-throw (DPDT) configurations, and then integrated in Low Temperature Co-fired Ceramics (LTCC) technology for the realization of large-order Clos 3D networks
    corecore