181 research outputs found

    The light speed vs the observer: the Kennedy-Thorndike test from GRAAL-ESRF

    Full text link
    High precision tests of the light speed constancy for all observers as of empirical basis of the Special Relativity have continuously been among the goals of advanced experimental studies. Based on the Compton Edge method proposed by us [1], a constraint on the one-way light speed isotropy and the Lorentz invariance violation has been obtained at the dedicated GRAAL experiment at European Synchrotron Radiation Facility (ESRF, Grenoble) [2-5]. Using the GRAAL's data we now get a new constraint on one of key tests of Special Relativity - the Kennedy-Thorndike experiment [6] - in probing the light speed invariance with respect to the velocity of the observer (apparatus). Our analysis takes advantage of GRAAL's setup where two separate energy scales are involved: first, via the position of the Compton Edge determining the light speed in the reference frame of incident 6 GeV electrons within the tagging system, second, in the calorimeter via the 1.27 MeV photons of the ^22 Na source. The two energy scales are engaged to each other through production of η\eta mesons by tagged laser Compton backscattered γ\gamma-rays. Accuracy of the calibration and stability of energies reached in each section enable us to obtain the limit 7 10^-12 for the Kennedy-Thorndike test, which improves the currently existing limits by three orders of magnitude.Comment: To appear in Eur Phys J C; 6 pages, 3 figure

    Quantum Memory for Photons in Case of Many Close Lying Exciton Resonances in Solids

    Full text link
    The possibility of storage of quantum information with photons is studied in the case of resonant transitions via many close lying exciton levels in a solid with impurity Lambda-atoms. The upper levels of the impurity atom form resonant Fano states, similar to the autoionization atomic states, due to the configuration interaction with the continuum of the exciton band. In this case slowing of light pulses is shown to be realistic, in the presence of the control field, down to the group velocity much lower than that in vacuum. The possibility of storage and reconstruction of a quantum pulse is studied in the case of the instantaneous switching on/off of the control field. It is shown that the signal quantum pulse cannot be stored undistorted for differing values of Fano parameters and for non-zero two-photon detuning and decay rate between the lower levels (decoherence). However, for small difference of the Fano parameters and for small values of the two-photon detuning and the decoherence there is no distortion in the case where the length of the pulse is much longer than the linear absorption (amplification) length, so the shape and quantum state of the light pulse can be restored.Comment: 15 pages, 3 figure

    Armenian grapevines: cytoembryological, morphological and chemical analysis

    Get PDF
    The objectives of our study was to phenotype Armenian grapevines on the base of cytoembryological, morphometric and phenolic content analysis of 10 wine and 10 table cultivars (Vitis vinifera L.). The presented results suggest that Armenian table grape cultivars have higher level of abnormalities in the process of seed formation than wine cultivars. However, during ovule development, the observed differences between table and wine varieties were not significant. The berry morphometric analysis demonstrated that table cultivars formed significantly larger and heavier berries than wine cultivars. The obtained results show that wine grapes contained significantly higher phenol concentrations than table grapes, in both colored and white grapevine cultivars. The study of phenol composition, an important chemical descriptor in grapevine phenotyping, provides oenological information useful to improve the wine quality. Cultivar characterization could be used as marker for the selection of table and wine grape breeding programs. These results will be upgraded in the database for Armenian grapevine varieties. In future Armenian germplasm will be compared with datasets of neighboring countries, to determine the varietal origins relationships

    Non-exciting wakefield structured bunches in a one-dimensional plasma model

    Get PDF
    A model of one-dimensional (1D) cold plasma with an external train of rigidly structured bunches with diverse charges has been introduced. In this model, a solution that cancels the wakefield after the train is found. The density of such bunches can be much greater than the density of the plasma, and a high amplitude electrical field arising inside the train can be used for charged-particle acceleration. In addition, analytical and numerical simulations have been performed

    Superluminal synchrotron radiation

    Get PDF
    To avoid complex computations based on wide Fourier expansions, the electromagnetic field of synchrotron radiation (SR) was analyzed using Lienard-Wiechert potentials in this work. The retardation equation was solved for ultrarelativistic movement of rotating charge at distances up to the trajectory radius. The radiation field was determined to be constricted into a narrow extended region with transverse sizes approximately the radius of trajectory divided by the particle Lorentz factor (characteristic SR length) cubed in the plane of trajectory and the distance between the observation and radiation emission point divided by the Lorentz factor in the vertical direction. The Lienard-Wiechert field of rotating charge was visualized using a parametric form to derive electric force lines rather than solving a retardation equation. The electromagnetic field of a charging point rotating at superluminal speeds was also investigated. This field, dubbed a superluminal synchrotron radiation (SSR) field by analogy with the case of a circulating relativistic charge, was also presented using a system of electric force lines. It is shown that SSR can arise in accelerators from “spot” of SR runs faster than light by outer wall of circular accelerator vacuum chamber. Furthermore, the mentioned characteristic lengths of SR in orbit plane and in vertical direction are less than the interparticle distances in real bunches in ultrarelativistic accelerators. It is indicating that this phenomenon should be taken into account when calculating bunch fields and involved at least into the beam dynamic consideration

    The Quality Reference Framework for MOOC Design

    Get PDF
    This paper introduces "The Quality Reference Framework (QRF) for the Quality of MOOCs". It was developed by the European Alliance for the Quality of Massive Open Online Courses (MOOCs), called MOOQ that could involve in the QRF finalization more than 10,000 MOOC learners, designers, facilitators and providers. The QRF consists of three dimensions: Phases, Perspectives and Roles. It includes two quality instruments: the QRF Key Quality Criteria for MOOC experts and QRF Quality Checklist for MOOC beginners

    Molecular mechanisms of wound healing: the role of zinc as an essential microelement

    Get PDF
    Wound healing is a complex multi-phase process consisting of several phases. Each stage involves metal ions, primarily zinc, which stimulates re-epithelialization, decreases inflammation and bacterial growth. The use of known zinc-based drugs is accompanied by side effects and low efficacy due to low skin absorption. These factors significantly limit use of such drugs and highlight the urgency of finding new, more effective and safe treatmen

    Armenian national grapevine collection: Conservation, characterization and prospects

    Get PDF
    The general strategy for grapevine genetic resources conservation in Armenia encompasses the collection of the still existing diversity and the use of protection techniques to minimize the losses over time. Being studied mainly by ampelography, the genetic diversity of Armenian grapevine needs to be re-investigated in accordance with modern requirements and international scales. The purpose of the presented research was the first large-scale molecular characterization of Armenian grape varieties by molecular methods using a set of 24 simple sequence repeat (SSR) markers encompassing the nine SSR markers recommended by the European project GrapeGen06. The obtained results indicate the uniqueness of the major part of the investigated varieties and reveal a substantial level of genetic variation within the Armenian grapevine. Based on the realized large-scale investigation a true-to-type inventory of Armenian grape germplasm will be realized and documented in theVitis International Variety Catalogue and in the European Vitisdatabase. The next step having strategic importance in terms of conservation of grape genetic resources in Armenia will be establishment of the first ArmenianVitis database with multi-crop passport description of all varieties preserved in grape collection

    Professional Learning Through Everyday Work: How Finance Professionals Self-Regulate Their Learning

    Get PDF
    Professional learning is a critical component of ongoing improvement and innovation and the adoption of new practices in the workplace. Professional learning is often achieved through learning embedded in everyday work tasks. However, little is known about how professionals self-regulate their learning through regular work activities. This paper explores how professionals in the finance sector (n-30) self-regulate their learning through day-to-day work. Analysis focuses on three sub-processes of self-regulated learning that have been identified as significant predictors of good self-regulated learning at work. A key characteristic of good self-regulation is viewing learning as a form of long-term, personalised self-improvement. This study provides a foundation for future policy and planning in organisations aiming to encourage self-regulated learning
    corecore