4 research outputs found

    Ilixadencel - an Allogeneic Cell-Based Anticancer Immune Primer for Intratumoral Administration

    No full text
    Intratumoral administration of an immune primer is a therapeutic vaccine strategy aimed to trigger dendritic cell (DC)-mediated cross-presentation of cell-associated tumor antigens to cytotoxic CD8(+) T cells without the need for tumor antigen characterization. The prevailing view is that these cross-presenting DCs have to be directly activated by pathogen-associated molecular patterns (PAMPS), including Toll-like receptor ligands or live microbial agents like oncolytic viruses. Emerging data are however challenging this view, indicating that the cross-presenting machinery in DCs is suboptimally activated by direct PAMP recognition, and that endogenous inflammatory factors are the main drivers of DC-mediated cross-presentation within the tumor. Here we present preclinical mode of action data, CMC and regulatory data, as well as initial clinical data on ilixadencel. This cell-based drug product is an off-the-shelf immune primer, consisting of pro-inflammatory allogeneic DCs secreting high amounts of pro-inflammatory chemokines and cytokines at the time of intratumoral administration. The mechanism of action of ilixadencel is to induce recruitment and activation of endogenous immune cells, including NK cells that subsequently promotes cross-presentation of cell-associated tumor antigens by co-recruited DCs

    Engineered bacteria to accelerate wound healing: an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial

    Get PDF
    Background Impaired wound healing is a growing medical problem and very few approved drugs with documented clinical efficacy are available. CXCL12-expressing lactic acid bacteria, Limosilaoocillus reuteri (ILP100-Topical), has been demonstrated to accelerate wound healing in controlled preclinical models. In this first-in-human study, the primary objective was to determine safety and tolerability of the drug candidate ILP100-Topical, while secondary objectives included assessments of clinical and biologic effects on wound healing by traditionally accepted methods and explorative and traceable assessments. Methods SITU-SAFE is an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial (EudraCT 2019-000680-24) consisting of a single (SAD) and a multiple ascending dose (MAD) part of three dose cohorts each. The study was performed at the Phase 1 Unit, Uppsala University Hospital, Uppsala, Sweden. Data in this article were collected between Sep 20th, 2019 and Oct 20th 2021. In total 240 wounds were induced on the upper arms in 36 healthy volunteers. SAD: 12 participants, 4 wounds (2/arm), MAD: 24 participants, 8 wounds (4/arm). Wounds in each participant were randomised to treatment with placebo/saline or ILP100-Topical. Findings In all individuals and doses, ILP100-Topical was safe and well-tolerated with no systemic exposure. A combined cohort analysis showed a significantly larger proportion of healed wounds (p = 0.020) on Day 32 by multi-dosing of ILP100-Topical when compared to saline/placebo (76% (73/96) and 59% (57/96) healed wounds, respectively). In addition, time to first registered healing was shortened by 6 days on average, and by 10 days at highest dose. ILP100-Topical increased the density of CXCL12+ cells in the wounds and local wound blood perfusion. Interpretation The favourable safety profile and observed effects on wound healing support continued clinical development of ILP100-Topical for the treatment of complicated wounds in patients

    Engineered bacteria to accelerate wound healing : an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial

    No full text
    Background: Impaired wound healing is a growing medical problem and very few approved drugs with documented clinical efficacy are available. CXCL12-expressing lactic acid bacteria, Limosilaoocillus reuteri (ILP100-Topical), has been demonstrated to accelerate wound healing in controlled preclinical models. In this first-in-human study, the primary objective was to determine safety and tolerability of the drug candidate ILP100-Topical, while secondary objectives included assessments of clinical and biologic effects on wound healing by traditionally accepted methods and explorative and traceable assessments. Methods: SITU-SAFE is an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial (EudraCT 2019-000680-24) consisting of a single (SAD) and a multiple ascending dose (MAD) part of three dose cohorts each. The study was performed at the Phase 1 Unit, Uppsala University Hospital, Uppsala, Sweden. Data in this article were collected between Sep 20th, 2019 and Oct 20th 2021. In total 240 wounds were induced on the upper arms in 36 healthy volunteers. SAD: 12 participants, 4 wounds (2/arm), MAD: 24 participants, 8 wounds (4/arm). Wounds in each participant were randomised to treatment with placebo/saline or ILP100-Topical. Findings: In all individuals and doses, ILP100-Topical was safe and well-tolerated with no systemic exposure. A combined cohort analysis showed a significantly larger proportion of healed wounds (p = 0.020) on Day 32 by multi-dosing of ILP100-Topical when compared to saline/placebo (76% (73/96) and 59% (57/96) healed wounds, respectively). In addition, time to first registered healing was shortened by 6 days on average, and by 10 days at highest dose. ILP100-Topical increased the density of CXCL12+ cells in the wounds and local wound blood perfusion. Interpretation: The favourable safety profile and observed effects on wound healing support continued clinical development of ILP100-Topical for the treatment of complicated wounds in patients
    corecore