13 research outputs found

    Response of neural reward regions to food cues in autism spectrum disorders

    Get PDF
    BACKGROUND: One hypothesis for the social deficits that characterize autism spectrum disorders (ASD) is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. METHOD: We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD) signal in response to the food images RESULTS: We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. CONCLUSION: These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD

    Altered Prefrontal Cortex Function Marks Heightened Anxiety Risk in Children.

    No full text
    ObjectiveAnxiety disorders are prevalent and cause substantial disability. An important risk factor for anxiety disorders is inhibited temperament, the tendency to be shy and to avoid new situations. Inhibited adults have heightened amygdala activation and less flexible engagement of the prefrontal cortex (PFC); however, it remains unknown whether these brain alterations are present in inhibited children before the onset of anxiety disorders.MethodA total of 37 children (18 inhibited and 19 uninhibited), 8 to 10 years of age, completed a task testing anticipation and viewing of threat stimuli and social stimuli in the magnetic resonance imaging (MRI) scanner. Brain activation and functional connectivity were measured.ResultsDuring the anticipation of threat stimuli, inhibited children failed to show the robust PFC engagement observed in the uninhibited children. In contrast, when viewing social stimuli, inhibited children had increased medial PFC and dorsolateral PFC activation. Connectivity analyses revealed a pattern of reduced connectivity between prefrontal and limbic regions and among distinct PFC regions in the inhibited group. The medial PFC emerged as a key hub of the altered PFC circuitry in inhibited children.ConclusionThis study provides new evidence of a neural signature of vulnerability to anxiety disorders. By investigating both anticipation and response to images, we identified that high-risk, inhibited children have widespread alterations in PFC function and connectivity, characterized by an inability to proactively prepare for social threat combined with heightened reactivity to social stimuli. Thus, children at high risk for anxiety show significantly altered prefrontal cortical function and connectivity before the onset of anxiety disorders

    Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth

    Get PDF
    Background: Choices requiring delay of gratification made during adolescence can have significant impact on life trajectory. Willingness to delay gratification can be measured using delay discounting tasks that require a choice between a smaller immediate reward and a larger delayed reward. Individual differences in the subjective value of delayed rewards are associated with risk for development of psychopathology including substance abuse. The neurobiological underpinnings related to these individual differences early in life are not fully understood. Using functional magnetic resonance imaging (fMRI), we tested the hypothesis that individual differences in delay discounting behavior in healthy youth are related to differences in responsiveness to potential reward. Method: Nineteen 10–14 year-olds performed a monetary incentive delay task to assess neural sensitivity to potential reward and a questionnaire to measure discounting of future monetary rewards. Results: Left ventromedial caudate activation during anticipation of potential reward was negatively correlated with delay discounting behavior. There were no regions where brain responses during notification of reward outcome were associated with discounting behavior. Conclusions: Brain activation during anticipation of potential reward may serve as a marker for individual differences in ability or willingness to delay gratification in healthy youth

    Response of neural reward regions to food cues in autism spectrum disorders

    No full text
    Abstract Background One hypothesis for the social deficits that characterize autism spectrum disorders (ASD) is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. Method We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD) signal in response to the food images Results We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. Conclusion These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD.</p
    corecore