7 research outputs found

    Evaluation of the performance of a multiplex reverse transcription polymerase chain reaction kit as a potential diagnostic and surveillance kit for rotavirus in Kenya

    Full text link
    Abstract Background Diarrhea is a serious concern worldwide, especially in developing countries. Rotavirus is implicated in approximately 400,000 infant deaths annually. It is highly contagious elevating the risk of outbreaks especially in enclosed settings such as daycare centers, hospitals, and boarding schools. Reliable testing methods are critical for early detection of infections, better clinical management, pathogen surveillance and evaluation of interventions such as vaccines. Enzyme immunoassays have proved to be reliable and practical in most settings; however, newer multiplex reverse transcription polymerase assays have been introduced in the Kenya market but have not been evaluated locally. Methods Stool samples collected from an ongoing Surveillance of Enteric Pathogens Causing diarrheal illness in Kenya (EPS) study were used to compare an established enzyme immunoassay, Premier™ Rotaclone® (Meridian Bioscience, Cincinnati, Ohio, U.S.A.), that can only detect group A rotavirus against a novel multiplex reverse transcription polymerase chain reaction kit, Seeplex® Diarrhea-V ACE Detection (Seegene, Seoul, Republic of Korea), that can detect rotavirus, astrovirus, adenovirus, and norovirus genogroups I and II. Detection frequency, sensitivity, specificity, turnaround time, and cost were compared to determine the suitability of each assay for clinical work in austere settings versus public health work in well-funded institutes in Kenya. Results The Premier™ Rotaclone® kit had a detection frequency of 11.2%, sensitivity of 77.8%, specificity of 100%, turnaround time of 93 min and an average cost per sample of 13.33 United States dollars (USD). The Seeplex® Diarrhea-V ACE Detection kit had a detection frequency of 16.0%, sensitivity of 100%, specificity of 98.1%, turnaround time of 359 min and an average cost per samples 32.74 United States dollars respectively. The detection frequency sensitivity and specificity of the Seeplex® Diarrhea-V ACE Detection kit mentioned above are for rotavirus only. Conclusions The higher sensitivity and multiplex nature of the Seeplex® Diarrhea-V ACE Detection kit make it suitable for surveillance of enteric viruses circulating in Kenya. However, its higher cost, longer turnaround time and complexity favor well-resourced clinical labs and research applications. The Premier™ Rotaclone®, on the other hand, had a higher specificity, shorter turnaround time, and lower cost making it more attractive for clinical work in low complexity labs in austere regions of the country. It is important to continuously evaluate assay platforms’ performance, operational cost, turnaround time, and usability in different settings so as to ensure quality results that are useful to the patients and public health practitioners.https://deepblue.lib.umich.edu/bitstream/2027.42/152177/1/40794_2019_Article_87.pd

    A Randomised, Double-Blind, Controlled Vaccine Efficacy Trial of DNA/MVA ME-TRAP Against Malaria Infection in Gambian Adults

    Get PDF
    BACKGROUND: Many malaria vaccines are currently in development, although very few have been evaluated for efficacy in the field. Plasmodium falciparum multiple epitope (ME)– thrombospondin-related adhesion protein (TRAP) candidate vaccines are designed to potently induce effector T cells and so are a departure from earlier malaria vaccines evaluated in the field in terms of their mechanism of action. ME-TRAP vaccines encode a polyepitope string and the TRAP sporozoite antigen. Two vaccine vectors encoding ME-TRAP, plasmid DNA and modified vaccinia virus Ankara (MVA), when used sequentially in a prime-boost immunisation regime, induce high frequencies of effector T cells and partial protection, manifest as delay in time to parasitaemia, in a clinical challenge model. METHODS AND FINDINGS: A total of 372 Gambian men aged 15–45 y were randomised to receive either DNA ME-TRAP followed by MVA ME-TRAP or rabies vaccine (control). Of these men, 296 received three doses of vaccine timed to coincide with the beginning of the transmission season (141 in the DNA/MVA group and 155 in the rabies group) and were followed up. Volunteers were given sulphadoxine/pyrimethamine 2 wk before the final vaccination. Blood smears were collected weekly for 11 wk and whenever a volunteer developed symptoms compatible with malaria during the transmission season. The primary endpoint was time to first infection with asexual P. falciparum. Analysis was per protocol. DNA ME-TRAP and MVA ME-TRAP were safe and well-tolerated. Effector T cell responses to a non-vaccine strain of TRAP were 50-fold higher postvaccination in the malaria vaccine group than in the rabies vaccine group. Vaccine efficacy, adjusted for confounding factors, was 10.3% (95% confidence interval, −22% to +34%; p = 0.49). Incidence of malaria infection decreased with increasing age and was associated with ethnicity. CONCLUSIONS: DNA/MVA heterologous prime-boost vaccination is safe and highly immunogenic for effector T cell induction in a malaria-endemic area. But despite having produced a substantial reduction in liver-stage parasites in challenge studies of non-immune volunteers, this first generation T cell–inducing vaccine was ineffective at reducing the natural infection rate in semi-immune African adults

    Quality and Brands of Amoxicillin Formulations in Nairobi, Kenya

    No full text
    Antibiotics are among the most counterfeited anti-infectious medicines in developing countries. Amoxicillin is one of the commonly prescribed, affordable, and easily accessible antibiotic in Kenya. It is a broad-spectrum antibiotic hence commonly used in chemotherapy. This study sought to determine the quality and identify the various brands of amoxicillin and its combination amoxicillin/clavulanic acid marketed in Nairobi County. Nairobi is the capital city of Kenya, gateway for imports and exports, and the headquarters to most of the pharmaceutical distributors. Ten wards in Nairobi County representing different socioeconomic settings were purposively sampled for the study. A detailed questionnaire was used to collect background data on brands of amoxicillin and amoxicillin/clavulanic acid in the market. A total of 106 different brands were found in the market: 85 were imports while 21 were locally manufactured. Fifty-three samples were analyzed with reference to the United States Pharmacopoeia. Amoxicillin and clavulanic acid contents for oral suspensions were determined immediately after reconstitution and 7 days thereafter to determine their stability during the prescription period. On day seven, 23.1% (3 out of 13) of amoxicillin and 66.7% (8 out of 12) amoxicillin/clavulanic acid oral suspensions presented levels below recommended limits. Uniformity of weight for amoxicillin capsules noted 13.6% (3 out of 22) failure rate, while amoxicillin/clavulanic acid tablets complied. Potency determination for all amoxicillin capsules analyzed were within required limits, but amoxicillin/clavulanic acid tablets showed 33.3% (2 out of 6) noncompliance. For amoxicillin capsule and amoxicillin/clavulanic acid tablet dissolution tests, there was 10.5% (2 out of 19) and 50% (2 out of 4) noncompliance, respectively. Overall, 37.7% of the drugs analyzed failed to comply with the Pharmacopoeia. These results highlight the presence of poor-quality amoxicillin formulations in Nairobi County, affirming the need for regular postmarket surveillance to inform on the situation of antibiotic quality in the Kenyan market

    Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions

    No full text
    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B<sub>1</sub>, B<sub>2</sub>, and B<sub>7</sub> have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, <i>Chloroflexus aurantiacus J-10-fl</i>, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival

    Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen <it>Plasmodium falciparum</it> FVO merozoite surface protein-1 (MSP1<sub>42</sub>) administered intramuscularly with adjuvant system AS01

    No full text
    Abstract Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations Clinical Trials NCT00666380</p

    Treatment outcomes of esophageal cancer in Eastern Africa: protocol of a multi-center, prospective, observational, open cohort study.

    No full text
    BackgroundEsophageal squamous cell carcinoma (ESCC) is a major cause of cancer morbidity and mortality in Eastern Africa. The majority of patients with ESCC in Eastern Africa present with advanced disease at the time of diagnosis. Several palliative interventions for ESCC are currently in use within the region, including chemotherapy, radiation therapy with and without chemotherapy, and esophageal stenting with self-expandable metallic stents; however, the comparative effectiveness of these interventions in a low resource setting has yet to be examined.MethodsThis prospective, observational, multi-center, open cohort study aims to describe the therapeutic landscape of ESCC in Eastern Africa and investigate the outcomes of different treatment strategies within the region. The 4.5-year study will recruit at a total of six sites in Kenya, Malawi and Tanzania (Ocean Road Cancer Institute and Muhimbili National Hospital in Dar es Salaam, Tanzania; Kilimanjaro Christian Medical Center in Moshi, Tanzania; Tenwek Hospital in Bomet, Kenya; Moi Teaching and Referral Hospital in Eldoret, Kenya; and Kamuzu Central Hospital in Lilongwe, Malawi). Treatment outcomes that will be evaluated include overall survival, quality of life (QOL) and safety. All patients (≥18 years old) who present to participating sites with a histopathologically-confirmed or presumptive clinical diagnosis of ESCC based on endoscopy or barium swallow will be recruited to participate. Key clinical and treatment-related data including standardized QOL metrics will be collected at study enrollment, 1 month following treatment, 3 months following treatment, and thereafter at 3-month intervals until death. Vital status and QOL data will be collected through mobile phone outreach.DiscussionThis study will be the first study to prospectively compare ESCC treatment strategies in Eastern Africa, and the first to investigate QOL benefits associated with different treatments in sub-Saharan Africa. Findings from this study will help define optimal management strategies for ESCC in Eastern Africa and other resource-limited settings and will serve as a benchmark for future research.Trial registrationThis study was retrospectively registered with the ClinicalTrials.gov database on December 15, 2021,&nbsp; NCT05177393
    corecore