118 research outputs found

    Heterogeneous Chemistry Related to Stratospheric Aircraft

    Get PDF
    Emissions from stratospheric aircraft that may directly or indirectly affect ozone include NO(y), H2O, soot and sulfuric acid. To fully assess the impact of such emissions, it is necessary to have a full understanding of both the homogeneous and heterogeneous transformations that may occur in the stratosphere. Heterogeneous reactions on stratospheric particles play a key role in partitioning ozone-destroying species between their active and reservoir forms. In particular, heterogeneous reactions tend to activate odd chlorine while deactivating odd nitrogen. Accurate modeling of the net atmospheric effects of stratospheric aircraft requires a thorough understanding of the competing effects of this activation/deactivation. In addition, a full understanding of the potential aircraft impacts requires that the abundance, composition and formation mechanisms of the particles themselves be established. Over the last three years with support from the High Speed Research Program, we have performed laboratory experiments to determine the chemical composition, formation mechanism, and reactivity of stratospheric aerosols

    Heterogeneous chemistry related to Antarctic ozone depletion: Reaction of ClONO2 and N2O5 on ice surfaces

    Get PDF
    Laboratory studies of heterogeneous reactions of possible importance for Antarctic ozone depletion were performed. In particular, the reactions of chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) were investigated on ice and HCl/ice surfaces. These reactions occur on the surfaces of polar stratospheric clouds (PSCs) over Antarctica. One reaction transforms the stable chlorine reservoir species (ClONO2 and HCl) into photochemically active chlorine in the form of HOCl and Cl2. Condensation of HNO3 in the reactions removes odd nitrogen from the stratosphere, a requirement in nearly all models of Antarctic ozone depletion. Other reactions may also be important for Antarctic ozone depletion. Like the reactions of chlorine nitrate, these reactions deplete odd nitrogen through HNO3 condensation. In addition, one reaction converts a stable chlorine reservior species (HCl) into photochemically active chlorine (ClNO2). These reactions were studied with a modified version of a Knudsen cell flow reactor

    Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    Get PDF
    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanisms thought to be responsible for ozone depletion in the Antarctic and the Arctic. Reactions on PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type I PCS's obtained in Antarctica in September 1987, using recently measured optical constraints of the various compounds that might be present in PSC's. We find that these PSC's were not composed of nitric acid trihydrate but instead had a more complex composition perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSC's to remove NOx permanently through sedimentation. The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism

    Mechanisms and Energetics of Alkane Activation by Transition Metal Ions in the Gas Phase

    Get PDF
    The mechanisms and energetics of alkane activation by transition metal ions in the gas phase are studied using an ion beam apparatus. These investigations concentrate on the reactivity of several early first row transition metal ions (Sc+, Ti+, V+) and the second row group 8-10 metal ions (Ru+, Rh+, Pd+). The reaction mechanisms are probed using deuterium labelled alkanes. Experimental and theoretical metal-ligand bond dissociation energies are used to help interpret the observed metal ion reactivities. Chapter II provides a detailed study of the reactions of Ru+, Rh+ and Pd+ with alkanes. The reactivity observed is contrasted to that of their first row congeners Fe+, Co+ and Ni+. Chapter III presents a determination of the heterolytic, M+-H-, and homolytic, M-H, bond dissociation energies for the first and second row group 8-10 metals. A correlation is found between the homolytic bond energies and the metal atom promotion energy to a state derived from an s1dn electronic configuration. Chapter IV examines the reactions of Ti+ and V+ with alkanes and deuterium labelled alkanes. Dehydrogenation mechanisms and deuterium isotope effects are explored. Chapter V reports the unusual reactivity of Sc+ with alkanes. The ability of Sc+ to form two strong metal-ligand sigma bonds results in alkane activation processes which are not observed for most other transition metal ions.</p

    Nitrogen Incorporation in CH_4-N_2 Photochemical Aerosol Produced by Far Ultraviolet Irradiation

    Get PDF
    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH_4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets. Key Words: Titan—Photochemical aerosol—CH_4-N_2 photolysis—Far UV—Nitrogen activation

    Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2_{2} on Haze Formation and Composition

    Get PDF
    Previous studies of haze formation in the atmosphere of the Early Earth have focused on N2_{2}/CO2_{2}/CH4_{4} atmospheres. Here, we experimentally investigate the effect of O2_{2} on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2_{2}/CO2_{2}/CH4_{4}/O2_{2} gas mixtures subjected to FUV radiation (115-400 nm) for a range of initial CO2_{2}/CH4_{4}/O2_{2} mixing ratios (O2_{2} ranging from 2 ppm to 0.2\%). At the lowest O2_{2} concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater) particles are still produced, but the addition of O2_{2} decreases the production rate. Both the particle size and number density decrease with increasing O2_{2}, indicating that O2_{2} affects particle nucleation and growth. The particle density increases with increasing O2_{2}. The addition of CO2_{2} and O2_{2} not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2_{2} results in the formation of nitrate bearing molecules. The fact that the presence of oxygen bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical properties measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.Comment: 15 pages, 3 tables, 8 figures, accepted in Astrophysical Journa

    Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible

    Get PDF
    The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis

    Ice Nucleation in Internally Mixed Ammonium Sulfate/Dicarboxylic Acid Particles

    Get PDF
    Recent studies have shown that tropospheric sulfate aerosols commonly contain 50% or more by mass organic species. The influence of these organics on the chemical and physical properties of sulfate aerosols is not fully established. Using an aerosol flow tube technique, we have determined ice nucleation temperatures for particles composed of ammonium sulfate and mixtures of ammonium sulfate with a series of dicarboxylic acids. A calibration curve was developed to allow us to convert the freezing temperatures to a saturation ratio required for ice nucleation. At levels detectable by our experimental technique we find that the freezing temperatures and critical ice saturation ratios of each system were identical, for a given water activity of the solution, even though the solutions contained varying fractions of inorganic and organic components. Further experiments showed that the freezing behavior of pure dicarboxylic acid particles was identical to that of the other systems studied if the water activity was identical. Although the apparent freezing temperatures reported here are substantially warmer than those predicted by the water activity based nucleation theory of T. Koop et al., we find that solution water activity defined the freezing conditions for the systems studied here

    Atmospheric Condensed-Phase Reactions of Glyoxal with Methylamine

    Get PDF
    [1] Glyoxal reacts with methylamine in drying cloud droplet/aerosol surrogates to form high molecular mass oligomers along with smaller amounts of 1,3-dimethylimidazole and light-absorbing compounds. The patterns observed by high-resolution time-of-flight aerosol mass spectrometry indicate that oligomers form from repeated imine units. The reactions are 1st order in each reactant: rate-limiting imine formation is followed by rapid dimer and oligomer formation. While excess methylamine evaporates from the droplet, half the glyoxal does not, due to self-oligomerization reactions that occur in the absence of methylamine. Glyoxal irreversibly traps volatile amine compounds in the aerosol phase, converting them into oligomers. This is the first reported mechanism for the formation of stable secondary organic aerosol (SOA) material from methylamine, a substance with only one carbon, and could produce as much as 11 Tg SOA yr−1 globally if glyoxal reacts exclusively by this pathway
    corecore