42 research outputs found

    Purification of all thirteen polypeptides of bovine heart cytochrome c oxidase from one aliquot of enzyme Characterization of bovine fetal heart cytochrome c oxidase

    Get PDF
    AbstractA protocol has been worked out for separating all thirteen different polypeptides in the beef heart cytochrome c oxidase complex from a single aliquot of enzyme. This involves an initial separation of polypeptides by gel filtration on a Biogel P-60 column in SDS, a step which purifies subunits CIV and CVIII and gives mixtures of CV+CVI, ASA, AED and STA, as well as CVII, CIX and IHQ. These mixtures are then resolved by reverse-phase high-performance liquid chromatography. The separation procedures have been applied to fetal heart cytochrome c oxidase of gestation between 100 and 200 days. No differences were found in the N-terminal sequences of any of the cytoplasmically made subunits or in the entire sequence of CIX between late fetal and adult forms of the enzyme

    Hexamerization-enhanced CD20 antibody mediates complement-dependent cytotoxicity in serum genetically deficient in C9

    Get PDF
    We examined complement-dependent cytotoxicity (CDC) by hexamer formation-enhanced CD20 mAb Hx-7D8 of patient-derived chronic lymphocytic leukemia (CLL) cells that are relatively resistant to CDC. CDC was analyzed in normal human serum (NHS) and serum from an individual genetically deficient for C9. Hx-7D8 was able to kill up to 80% of CLL cells in complete absence of C9. We conclude that the narrow C5b-8 pores formed without C9 are sufficient for CDC due to efficient antibody-mediated hexamer formation. In the absence of C9, we observed transient intracellular increases of Ca2 + during CDC (as assessed with FLUO-4) that were extended in time. This suggests that small C5b-8 pores allow Ca2 + to enter the cell, while dissipation of the fluorescent signal accompanying cell disintegration is delayed. The Ca2 + signal is retained concomitantly with TOPRO-3 (viability dye) staining, thereby confirming that Ca2 + influx represents the most proximate mediator of cell death by CDC

    FcγR-Mediated Trogocytosis 2.0: Revisiting History Gives Rise to a Unifying Hypothesis

    No full text
    There is increasing interest in the clinical implications and immunology of trogocytosis, a process in which the receptors on acceptor cells remove and internalize cognate ligands from donor cells. We have reported that this phenomenon occurs in cancer immunotherapy, in which cells that express FcγR remove and internalize CD20 and bound mAbs from malignant B cells. This process can be generalized to include other reactions including the immune adherence phenomenon and antibody-induced immunosuppression. We discuss in detail FcγR-mediated trogocytosis and the evidence supporting a proposed predominant role for liver sinusoidal endothelial cells via the action of the inhibitory receptor FcγRIIb2. We describe experiments to test the validity of this hypothesis. The elucidation of the details of FcγR-mediated trogocytosis has the potential to allow for the development of novel therapies that can potentially block or enhance this reaction, depending upon whether the process leads to unfavorable or positive biological effects

    How Do mAbs Make Use of Complement to Kill Cancer Cells? The Role of Ca2+

    No full text
    We examined the kinetics and mechanisms by which monoclonal antibodies (mAbs) utilize complement to rapidly kill targeted cancer cells. Based on results from flow cytometry, confocal microscopy and high-resolution digital imaging experiments, the general patterns which have emerged reveal cytotoxic activities mediated by substantial and lethal Ca2+ fluxes. The Ca2+ fluxes are common to the reported pathways that have been utilized by other toxins in killing nucleated cells. These reactions terminate in very high levels of cell killing, and based on these considerations, we suggest additional strategies to further enhance mAb-based targeting of cancer with complement
    corecore