213 research outputs found
Solar silicon from directional solidification of MG silicon produced via the silicon carbide route
A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles
Evidence of a structural anomaly at 14 K in polymerised CsC60
We report the results of a high-resolution synchrotron X-ray powder
diffraction study of polymerised CsC in the temperature range 4 to 40 K.
Its crystal structure is monoclinic (space group I2/m), isostructural with
RbC. Below 14 K, a spontaneous thermal contraction is observed along
both the polymer chain axis, and the interchain separation along [111],
. This structural anomaly could trigger the occurrence of the spin-singlet
ground state, observed by NMR at the same temperature.Comment: 8 pages, 5 figures, submitte
Recovering Metallicity in A4C60: The Case of Monomeric Li4C60
The restoration of metallicity in the high-temperature, cubic phase of Li4C60
represents a remarkable feature for a member of the A4C60 family (A = alkali
metal), invariably found to be insulators. Structural and resonance technique
investigations on Li4C60 at T > 600 K, show that its fcc structure is
associated with a complete (4e) charge transfer to C60 and a sparsely populated
Fermi level. These findings not only emphasize the crucial role played by
lattice symmetry in fulleride transport properties, but also re-dimension the
role of Jahn-Teller effects in band structure determination. Moreover, they
suggest the present system as a potential precursor to a new class of
superconducting fullerides.Comment: 4 pages, 3 figure
Antiferromagnetic fluctuations in the normal state of LiFeAs
We present a detailed study of 75As NMR Knight shift and spin-lattice
relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs.
Our analysis of the Korringa relation suggests that LiFeAs exhibits strong
antiferromagnetic fluctuations, if transferred hyperfine coupling is a dominant
interaction between 75As nuclei and Fe electronic spins, whereas for an on-site
hyperfine coupling scenario, these are weaker, but still present to account for
our experimental observations. Density-functional calculations of electric
field gradient correctly reproduce the experimental values for both 75As and
7Li sites.Comment: 5 pages, 3 figures, thoroughly revised version with refined
experimental data, accepted for publication as a Rapid Communication in
Physical Review B
Fermiological Interpretation of Superconductivity/Non-superconductivity of FeTe_{1-x}Se_{x} Thin Crystal Determined by Quantum Oscillation Measurement
We have successfully observed quantum oscillation (QO) for FeTe_{1-x}Se_{x}.
QO measurements were performed using non-superconducting and superconducting
thin crystals of FeTe_{0.65}Se_{0.35} fabricated by the scotch-tape method. We
show that the Fermi surfaces (FS) of the non-superconducting crystal are in
good agreement with the rigid band shift model based on electron doping by
excess Fe while that of the superconducting crystal is in good agreement with
the calculated FS with no shift. From the FS comparison of both crystals, we
demonstrate the change of the cross-sectional area of the FS, suggesting that
the suppression of the FS nesting with the vector Q_{s} = (\pi, \pi) due to
excess Fe results in the disappearance of the superconductivity.Comment: 8 pages, 4 figure
Unusual polymerization in the Li4C60 fulleride
Li4C60, one of the best representatives of lithium intercalated fullerides,
features a novel type of 2D polymerization. Extensive investigations, including
laboratory x-ray and synchrotron radiation diffraction, 13C NMR, MAS and Raman
spectroscopy, show a monoclinic I2/m structure, characterized by chains of
[2+2]-cycloaddicted fullerenes, sideways connected by single C-C bonds. This
leads to the formation of polymeric layers, whose insulating nature, deduced
from the NMR and Raman spectra, denotes the complete localization of the
electrons involved in the covalent bonds.Comment: 7 pages, 6 figures, RevTex4, submitted to Phys. Rev.
Nd induced Mn spin-reorientation transition in NdMnAsO
A combination of synchrotron X-ray, neutron powder diffraction,
magnetization, heat capacity and electrical resistivity measurements reveals
that NdMnAsO is an antiferromagnetic semiconductor with large Neel temperature
(TN = 359(2) K). At room temperature the magnetic propagation vector k = 0 and
the Mn moments are directed along the crystallographic c-axis (mMn = 2.41(6)
BM). Upon cooling a spin reorientation (SR) transition of the Mn moments into
the ab-plane occurs (TSR = 23 K). This coincides with the long range ordering
of the Nd moments, which are restricted to the basal plane. The magnetic
propagation vector remains k = 0. At base temperature (1.6 K) the fitted
moments are mab,Mn = 3.72(1) BM and mab,Nd = 1.94(1) BM. The electrical
resistivity is characterized by a broad maximum at 250 K, below which it has a
metallic temperature dependence but semiconducting magnitude (rho250K = 50 Ohm
cm, residual resistivity ratio = 2), and a slight upturn at the SR transition
Contrasting Pressure Effects in Sr2VFeAsO3 and Sr2ScFePO3
We report the resistivity measurements under pressure of two Fe-based
superconductors with a thick perovskite oxide layer, Sr2VFeAsO3 and Sr2ScFePO3.
The superconducting transition temperature Tc of Sr2VFeAsO3 markedly increases
with increasing pressure. Its onset value, which was Tc{onset}=36.4 K at
ambient pressure, increases to Tc{onset}=46.0 K at ~4 GPa, ensuring the
potential of the "21113" system as a high-Tc material. However, the
superconductivity of Sr2ScFePO3 is strongly suppressed under pressure. The
Tc{onset} of ~16 K decreases to ~5 K at ~4 GPa, and the zero-resistance state
is almost lost. We discuss the factor that induces this contrasting pressure
effect.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jpn. No.12
(2009
Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe_1-x
The Fe isotope effect (Fe-IE) on the transition temperature T_c and the
crystal structure was studied in the Fe chalcogenide superconductor FeSe_1-x by
means of magnetization and neutron powder diffraction (NPD). The substitution
of natural Fe (containing \simeq 92% of ^{56}Fe) by its lighter ^{54}Fe isotope
leads to a shift of T_c of 0.22(5)K corresponding to an Fe-IE exponent of
\alpha_Fe=0.81(15). Simultaneously, a small structural change with isotope
substitution is observed by NDP which may contribute to the total Fe isotope
shift of T_c.Comment: 4 pages, 3 figure
Synthesis, structural and physical properties of -FeSe
We report on synthesis, structural characterization, resistivity, magnetic
and thermal expansion measurements on the as yet unexplored -phase of
FeSe, here synthesized under ambient- (AP) and high-pressure (HP)
conditions. We show that in contrast to -FeSe, monophasic
superconducting -FeSe can be obtained in off-stoichiometric
samples with excess Fe atoms preferentially residing in the van der Waals gap
between the FeSe layers. The AP -FeSe sample studied here
( 8.5\,K) possesses an unprecedented residual resistivity ratio
RRR 16. Thermal expansion data reveal a small feature around
90\,K, which resembles the anomaly observed at the structural and
magnetic transitions for other Fe-based superconductors, suggesting that some
kind of "magnetic state" is formed also in FeSe. %indicative of a fluctuating
magnetic ordering. For HP samples (RRR 3), the disorder within the
FeSe layers is enhanced through the introduction of vacancies, the saturated
magnetic moment of Fe is reduced and only spurious superconductivity is
observed.Comment: 7 pages, 8 figures, published versio
- …