24 research outputs found

    Multimodal characterization of the late effects of traumatic brain injury: a methodological overview of the Late Effects of Traumatic Brain Injury Project

    Get PDF
    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer’s and Parkinson’s disease (AD and PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional MRI, and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study

    A New Phased-Array Magnetic Resonance Imaging Receive-Only Coil for HBO2 Studies

    No full text
    The paper describes a new magnetic resonance imaging (MRI) phased-array receive-only (Rx) coil for studying decompression sickness and disorders of hyperbaricity, including nitrogen narcosis. Functional magnetic resonance imaging (fMRI) is noninvasive, is considered safe, and may allow studying the brain under hyperbaric conditions. All of the risks associated with simultaneous MRI and HBO2 therapy are described in detail, along with all of the mitigation strategies and regulatory testing. One of the most significant risks for this type of study is a fire in the hyperbaric chamber caused by the sparking of the MRI coils as a result of high-voltage RF arcs. RF pulses at 128 MHz elicit signals from human tissues, and RF sparking occurs commonly and is considered safe in normobaric conditions. We describe how we built a coil for HBO2-MRI studies by modifying an eight-channel phased-array MRI coil with all of the mitigation strategies discussed. The coil was fabricated and tested with a unique testing platform that simulated the worst-case RF field of a three-Tesla MRI in a Hyperlite hyperbaric chamber at 3 atm pressure. The coil was also tested in normobaric conditions for image quality in a 3 T scanner in volunteers and SNR measurement in phantoms. Further studies are necessary to characterize the coil safety in HBO2/MRI

    A 22-channel receive array with Helmholtz transmit coil for anesthetized macaque MRI at 3T

    No full text
    The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22-channel receive coil array was constructed specifically for rapid high-resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal-to-noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single- and four-channel receive coils routinely used for macaque MRI. The 22-channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single- or four-channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single- and four-channel coils. Finally, the performance of the array for functional, anatomical and diffusion-weighted imaging was evaluated. For all three modalities, the use of the 22-channel array allowed for high-resolution and accelerated image acquisition.status: publishe

    Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T

    No full text
    PURPOSE: To design and validate a radiofrequency (RF) array coil for cervical spinal cord imaging at 7T. METHODS: A 19-channel receive array with a four-channel transmit array was developed on a close-fitting coil former at 7T. Transmit efficiency and specific absorption rate were evaluated in a B(1)(+) mapping study and an electromagnetic model. Receive signal-to-noise ratio (SNR) and noise amplification for parallel imaging were evaluated and compared with a commercial 3T 19-channel head–neck array and a 7T four-channel spine array. The performance of the array was qualitatively demonstrated in human volunteers using high-resolution imaging (down to 300 ÎŒm in-plane). RESULTS: The transmit and receive arrays showed good bench performance. The SNR was approximately 4.2-fold higher in the 7T receive array at the location of the cord with respect to the 3T coil. The g-factor results showed an additional acceleration was possible with the 7T array. In vivo imaging was feasible and showed high SNR and tissue contrast. CONCLUSION: The highly parallel transmit and receive arrays were demonstrated to be fit for spinal cord imaging at 7T. The high sensitivity of the receive coil combined with ultra-high field will likely improve investigations of microstructure and tissue segmentation in the healthy and pathological spinal cord

    A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T

    No full text
    © 2019 Functional magnetic resonance imaging (fMRI) in monkeys is important for bridging the gap between invasive animal brain studies and non-invasive human brain studies. To resolve the finer functional structure of the monkey brain, ultra-high-field (UHF) MR is essential, and high-performance, close-fitting RF receive coils are typically desired to fully leverage the intrinsic gains provided by UHF MRI. Moreover, static field (B0) inhomogeneity arising from the tissue susceptibility interface is more severe at UHF, presenting an obstacle to achieving high-resolution fMRI. B0 shim of the monkey head is challenging due to its smaller size and more complex sources of B0 offsets in multi-modal imaging tasks. In the present work, we have customized an array coil for lightly-anesthetized monkey fMRI in the 7T human scanner that combines RF and multi-coil (MC) B0 shim functionality (also referred to as AC/DC coils) to provide high imaging SNR and high-spatial-order, rapidly switchable B0-shim capability. Additional space was retained on the coil to render it compatible with monkey multi-modal imaging studies. Both MC global (whole-volume) and dynamic (slice-optimized) shim methods were tested and evaluated, and the benefits of MC shim for fMRI experiments was also studied. A minor reduction in RF coil performance was found after introducing additional B0 shim circuitry. However, the proposed RF coil provided higher image SNR and more uniform contrast compared to a commercially available coil for human knee imaging. Compared with static 2nd-order shim, the B0 inhomogeneity was reduced by 56.8%, and 95-percentile B0 offset was reduced to within 28.2 Hz through MC shim, versus 68.7 Hz with 2nd-order static shim. As a result, functional image quality could be improved, and brain activation can be better detected using the proposed AC/DC monkey coil

    A novel whole-head RF coil design tailored for concurrent multichannel brain stimulation and imaging at 3T

    No full text
    Purpose: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. Methods: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. Results: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. Conclusion: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function

    Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants

    No full text
    Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B 1+ field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants.NIH (Grants K99EB021320, R01EB006847, and P41EB015896

    SAR reduction in 7T C-spine imaging using a “dark modes” transmit array strategy

    No full text
    Purpose: Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods: We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results: For B[subscript 1][superscript +] shimming in the spine, the addition of dipole elements did not significantly alter the B[subscript 1][superscript +] spatial pattern but reduced local SAR by 36%. Conclusion: The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB006847)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB007942)Madrid-MIT M+Vision Consortiu

    Comparison between 8‐ and 32‐channel phased‐array receive coils for in vivo hyperpolarized 13

    No full text
    PurposeTo compare the performance of an 8-channel surface coil/clamshell transmitter and 32-channel head array coil/birdcage transmitter for hyperpolarized 13 C brain metabolic imaging.MethodsTo determine the field homogeneity of the radiofrequency transmitters, B1 + mapping was performed on an ethylene glycol head phantom and evaluated by means of the double angle method. Using a 3D echo-planar imaging sequence, coil sensitivity and noise-only phantom data were acquired with the 8- and 32-channel receiver arrays, and compared against data from the birdcage in transceiver mode. Multislice frequency-specific 13 C dynamic echo-planar imaging was performed on a patient with a brain tumor for each hardware configuration following injection of hyperpolarized [1-13 C]pyruvate. Signal-to-noise ratio (SNR) was evaluated from pre-whitened phantom and temporally summed patient data after coil combination based on optimal weights.ResultsThe birdcage transmitter produced more uniform B1 + compared with the clamshell: 0.07 versus 0.12 (fractional error). Phantom experiments conducted with matched lateral housing separation demonstrated 8- versus 32-channel mean transceiver-normalized SNR performance: 0.91 versus 0.97 at the head center; 6.67 versus 2.08 on the sides; 0.66 versus 2.73 at the anterior; and 0.67 versus 3.17 on the posterior aspect. While the 8-channel receiver array showed SNR benefits along lateral aspects, the 32-channel array exhibited greater coverage and a more uniform coil-combined profile. Temporally summed, parameter-normalized patient data showed SNRmean,slice ratios (8-channel/32-channel) ranging 0.5-2.00 from apical to central brain. White matter lactate-to-pyruvate ratios were conserved across hardware: 0.45 ± 0.12 (8-channel) versus 0.43 ± 0.14 (32-channel).ConclusionThe 8- and 32-channel hardware configurations each have advantages in particular brain anatomy
    corecore