9 research outputs found

    Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain

    Get PDF
    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-C1 cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatpla4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases

    Comparative dosimetry for children and rodents exposed to extremely low-frequency magnetic fields

    No full text
    We describe a method to correlate E-fields induced by exposure to extremely low frequency magnetic fields in laboratory mice and rats during in vivo experiments to those induced in children. Four different approaches of mapping relative dose rates between humans and rodents are herein proposed and analyzed. Based on these mapping methods and volume averaging guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNRP) in 2010, maximum and median induced field values for whole body and for tissues of children and rodents were evaluated and compared. Median induced electric fields in children younger than 10 years old are in the range 5.9–8.5 V/m per T (±0.4 dB). Maximum induced electric fields, generally in the skin, are between 48 V/m and 228 V/m per T (±4 dB). To achieve induced electric fields of comparable magnitude in rodents, external magnetic field must be increased by a factor of 4.0 (±2.6 dB) for rats and 7.4 (±1.8 dB) for mice. Meanwhile, to achieve comparable magnetic field dose in rodents, ratio is close to one. These induced field dose rates for children and rodents can be used to quantifiably compare experimental data from in vivo studies with data on exposure of children from epidemiological studies, such as for leukemia.Grant sponsor: European Union’s Seventh Programme for research, technological development and demonstration; grant number: 282891.Peer Reviewe
    corecore