10 research outputs found

    4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats

    Get PDF
    4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period

    Sensitivity to Enterocins of Biogenic Amine-Producing Faecal Enterococci from Ostriches and Pheasants

    No full text
    Enterococci are widespread bacteria forming the third largest genus among lactic acid bacteria. Some possess probiotic properties or they can produce beneficial proteinaceous antimicrobial substances called enterocins. On the other hand, some enterococci produce biogenic amines (BAs), so this study is focused on the sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Altogether, 60 enterococci isolated from faeces of ostriches and pheasants were tested for production of BAs. This target of the identified enterococci involved 46 strains selected from 140 ostriches and 17 from 60 pheasants involving the species Enterococcus hirae, E. faecium, E. faecalis, and E. mundtii. Although BAs histamine, cadaverine, putrescine, and tryptamine were not detected in the enterococci tested, in general high BA production by the tested enterococci was noted. The species E. hirae formed the majority of the enterococcal strains from ostrichs faeces (34 strains). High production of tyramine (TYM) was measured with an average amount of 958.16 ± 28.18 mg/ml. Among the enterococci from pheasants, the highest was production of TYM compared to phenylethylamine, spermidine, and spermine. Enterococci featured high BA production; however, they were sensitive to seven enterocins with inhibition activity ranging from 100 up to 25,600 AU/ml. © 2017, Springer Science+Business Media New York.2/0004/14, VEGA, Vedecká Grantová Agentúra MŠVVaŠ SR a SAV; 2/0006/2017, VEGA, Vedecká Grantová Agentúra MŠVVaŠ SR a SAVSlovak Scientific Agency VEGA [2/0004/14, 2/0006/17

    Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431

    Full text link
    peer reviewedEnterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431 from artisanalproduced Peruvian cheeses showed the presence of 4 putative bacteriocin genes: enterocin A, enterocin B, enterocin P, and mundticin KS. The multiple bacteriocin producer E. faecium CWBI-B1430 presented 1 plasmid of 34.6 kb, whereas E. mundtii CWBI-B1431 contained 1 plasmid of 11.0 kb. The structural gene responsible for mundticin KS production was located on 5.6 and 3.1 kb HindIII plasmid fragments. The reverse transcription-PCR analysis showed the expression of the bacteriocin genes enterocin A, enterocin B, and mundticin KS in E. faecium CWBI-B1430 and the bacteriocin genes enterocin P and mundticin KS in E. mundtii CWBI-B1431. To our knowledge, this is the first report of the expression of mundticin KS in E. faecium and enterocin P in E. mundtii
    corecore