1,657 research outputs found

    A magnetic lens for cold atoms controlled by a rf field

    Full text link
    We report on a new type of magnetic lens that focuses atomic clouds using a static inhomogeneous magnetic field in combination with a radio-frequency field. The experimental study is performed with a cloud of cold cesium atoms. The rf field adiabatically deforms the magnetic potential of a coil and therefore changes its focusing properties. The focal length can be tuned precisely by changing the rf frequency value. Depending on the rf antenna position relative to the DC magnetic profile, the focal length of the atomic lens can be either decreased or increased by the rf field

    All-Optical Production of Chromium Bose-Einstein Condensates

    Full text link
    We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by combining the use of Radio Frequency (RF) frequency sweeps and depumping towards the ^5S_2 state. The atoms are then pumped to the absolute ground state, and transferred into a crossed FORT in which they are evaporated. The fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost pure condensate.Comment: 4 pages, 4 figure

    Accumulation and thermalization of cold atoms in a finite-depth magnetic trap

    Get PDF
    We experimentally and theoretically study the continuous accumulation of cold atoms from a magneto-optical trap (MOT) into a finite depth trap, consisting in a magnetic quadrupole trap dressed by a radiofrequency (RF) field. Chromium atoms (52 isotope) in a MOT are continuously optically pumped by the MOT lasers to metastable dark states. In presence of a RF field, the temperature of the metastable atoms that remain magnetically trapped can be as low as 25 microK, with a density of 10^17 atoms.m-3, resulting in an increase of the phase-space density, still limited to 7.10^-6 by inelastic collisions. To investigate the thermalization issues in the truncated trap, we measure the free evaporation rate in the RF-truncated magnetic trap, and deduce the average elastic cross section for atoms in the 5D4 metastable states, equal to 7.0 10^-16m2.Comment: 9 pages, 10 Figure

    Development of probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory

    Get PDF
    This report demonstrates a probabilistic quantitative pathway analysis model that can be used in risk assessment for plant pest introduction into EU territory on a range of edible commodities (apples, oranges, stone fruits and wheat). Two types of model were developed: a general commodity model that simulates distribution of an imported infested/infected commodity to and within the EU from source countries by month; and a consignment model that simulates the movement and distribution of individual consignments from source countries to destinations in the EU. The general pathway model has two modules. Module 1 is a trade pathway model, with a Eurostat database of five years of monthly trade volumes for each specific commodity into the EU28 from all source countries and territories. Infestation levels based on interception records, commercial quality standards or other information determine volume of infested commodity entering and transhipped within the EU. Module 2 allocates commodity volumes to processing, retail use and waste streams and overlays the distribution onto EU NUTS2 regions based on population densities and processing unit locations. Transfer potential to domestic host crops is a function of distribution of imported infested product and area of domestic production in NUTS2 regions, pest dispersal potential, and phenology of susceptibility in domestic crops. The consignment model covers the several routes on supply chains for processing and retail use. The output of the general pathway model is a distribution of estimated volumes of infested produce by NUTS2 region across the EU28, by month or annually; this is then related to the accessible susceptible domestic crop. Risk is expressed as a potential volume of infested fruit in potential contact with an area of susceptible domestic host crop. The output of the consignment model is a volume of infested produce retained at each stage along the specific consignment trade chain

    Dipolar atomic spin ensembles in a double-well potential

    Full text link
    We experimentally study the spin dynamics of mesoscopic ensembles of ultracold magnetic spin-3 atoms located in two separated wells of an optical dipole trap. We use a radio-frequency sweep to selectively flip the spin of the atoms in one of the wells, which produces two separated spin domains of opposite polarization. We observe that these engineered spin domains are metastable with respect to the long-range magnetic dipolar interactions between the two ensembles. The absence of inter-cloud dipolar spin-exchange processes reveals a classical behavior, in contrast to previous results with atoms loaded in an optical lattice. When we merge the two subsystems, we observe spin-exchange dynamics due to contact interactions which enable the first determination of the s-wave scattering length of 52Cr atoms in the S=0 molecular channel a_0=13.5^{+11}_{-10.5}a_B (where a_B is the Bohr radius).Comment: 9 pages, 7 figure

    Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer

    Get PDF
    Thermochemical biomass-to-fuel conversion requires an increased hydrogen concentration in the syngas derived from gasification, which is currently achieved by water–gas-shift reaction and CO2 removal. State-of-the-art biomass-to-fuels convert less than half of the biomass carbon with the remaining emitted as CO2. Full conversion of biomass carbon can be achieved by integrating solid-oxide electrolyzer with different concepts: (1) steam electrolysis with the hydrogen produced injected into syngas, and (2) co-electrolysis of CO2 and H2O to convert the CO2 captured from the syngas. This paper investigates techno-economically steam- or co-electrolysis-based biomass-to-fuel processes for producing synthetic natural gas, methanol, dimethyl ether and jet fuel, considering system-level heat integration and optimal placement of steam cycles for heat recovery. The results show that state-of-the-art biomass-to-fuels achieve similar energy efficiencies of 48–51% (based on a lower heating value) for the four different fuels. The integrated concept with steam electrolysis achieves the highest energy efficiency: 68% for synthetic natural gas, 64% for methanol, 63% for dimethyl ether, and 56% for jet fuel. The integrated concept with co-electrolysis can enhance the state-of-the-art energy efficiency to 66% for synthetic natural gas, 61% for methanol, and 54% for jet fuel. The biomass-to-dimethyl ether with co-electrolysis only reaches an efficiency of 49%, due to additional heat demand. The levelized cost of the product of the integrated concepts highly depends on the price and availability of renewable electricity. The concept with co-electrolysis allows for additional operation flexibility without renewable electricity, resulting in high annual production. Thus, with limited annual available hours of renewable electricity, biomass-to-fuel with co-electrolysis is more economically convenient than that with steam electrolysis. For a plant scale of 60 MWth biomass input with the renewable electricity available for 1800 h annually, the levelized cost of product of biomass-to-synthesis-natural-gas with co-electrolysis is 35 $/GJ, 20% lower than that with steam-electrolysis

    Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase

    Get PDF
    In cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping

    Radio-frequency induced ground state degeneracy in a Chromium Bose-Einstein condensate

    Full text link
    We study the effect of strong radio-frequency (rf) fields on a chromium Bose-Einstein condensate (BEC), in a regime where the rf frequency is much larger than the Larmor frequency. We use the modification of the Land\'{e} factor by the rf field to bring all Zeeman states to degeneracy, despite the presence of a static magnetic field of up to 100 mG. This is demonstrated by analyzing the trajectories of the atoms under the influence of dressed magnetic potentials in the strong field regime. We investigate the problem of adiabaticity of the rf dressing process, and relate it to how close the dressed states are to degeneracy. Finally, we measure the lifetime of the rf dressed BECs, and identify a new rf-assisted two-body loss process induced by dipole-dipole interactions.Comment: 4 pages, 4 figure
    • …
    corecore