2,392 research outputs found

    Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property

    Full text link
    The intrinsic anomalous Hall effect in metallic ferromagnets is shown to be controlled by Berry phases accumulated by adiabatic motion of quasiparticles on the Fermi surface, and is purely a Fermi-liquid property, not a ``bulk'' Fermi sea property like Landau diamagnetism, as has been previously supposed. Berry phases are a new topological ingredient that must be added to Landau Fermi-liquid theory in the presence of broken inversion or time-reversal symmetry.Comment: 4 pages, 0 figures; to appear in Physical Review Letters; cleaner form of main formula+note added confirming continued validity of result in interacting Fermi liquids: + improved summary paragraph stating result; final published version (minor changes

    Density Functional Theory of Multicomponent Quantum Dots

    Full text link
    Quantum dots with conduction electrons or holes originating from several bands are considered. We assume the particles are confined in a harmonic potential and assume the electrons (or holes) belonging to different bands to be different types of fermions with isotropic effective masses. The density functional method with the local density approximation is used. The increased number of internal (Kohn-Sham) states leads to a generalisation of Hund's first rule at high densities. At low densitites the formation of Wigner molecules is favored by the increased internal freedom.Comment: 11 pages, 5 figure

    Cracks Cleave Crystals

    Full text link
    The problem of finding what direction cracks should move is not completely solved. A commonly accepted way to predict crack directions is by computing the density of elastic potential energy stored well away from the crack tip, and finding a direction of crack motion to maximize the consumption of this energy. I provide here a specific case where this rule fails. The example is of a crack in a crystal. It fractures along a crystal plane, rather than in the direction normally predicted to release the most energy. Thus, a correct equation of motion for brittle cracks must take into account both energy flows that are described in conventional continuum theories and details of the environment near the tip that are not.Comment: 6 page

    Product recognition in store shelves as a sub-graph isomorphism problem

    Full text link
    The arrangement of products in store shelves is carefully planned to maximize sales and keep customers happy. However, verifying compliance of real shelves to the ideal layout is a costly task routinely performed by the store personnel. In this paper, we propose a computer vision pipeline to recognize products on shelves and verify compliance to the planned layout. We deploy local invariant features together with a novel formulation of the product recognition problem as a sub-graph isomorphism between the items appearing in the given image and the ideal layout. This allows for auto-localizing the given image within the aisle or store and improving recognition dramatically.Comment: Slightly extended version of the paper accepted at ICIAP 2017. More information @project_page --> http://vision.disi.unibo.it/index.php?option=com_content&view=article&id=111&catid=7

    Magnetism in one-dimensional quantum dot arrays

    Full text link
    We employ the density functional Kohn-Sham method in the local spin-density approximation to study the electronic structure and magnetism of quasi one-dimensional periodic arrays of few-electron quantum dots. At small values of the lattice constant, the single dots overlap, forming a non-magnetic quantum wire with nearly homogenous density. As the confinement perpendicular to the wire is increased, i.e. as the wire is squeezed to become more one-dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots are placed further apart. It is determined by the electronic shell filling of the individual quantum dots. At larger values of the lattice constant, the band structure for odd numbers of electrons per dot indicates that the array could support spin-polarized transport and therefore act as a spin filter.Comment: 11 pages, 6 figure

    Radiation studies for GaAs in the ATLAS Inner Detector

    Get PDF
    We estimate the hardness factors and the equivalent 1 MeV neutron fluences for hadrons fluences expected at the GaAs positions wheels in the ATLAS Inner Detector. On this basis the degradation of the GaAs particle detectors made from different substrates as a function of years LHC operation is predicted.Comment: 11 pages, 6 Postscript figures, uses elsart.cls, submitted to Nucl. Inst. and Met

    Intrinsic anomalous Hall effect in nickel: An GGA+U study

    Full text link
    The electronic structure and intrinsic anomalous Hall conductivity of nickel have been calculated based on the generalized gradient approximation (GGA) plus on-site Coulomb interaction (GGA+U) scheme. It is found that the intrinsic anomalous Hall conductivity (σxyH\sigma_{xy}^H) obtained from the GGA+U calculations with U=1.9U = 1.9 eV and J=1.2J=1.2 eV, is in nearly perfect agreement with that measured recently at low temperatures while, in contrast, the σxyH\sigma_{xy}^H from the GGA calculations is about 100% larger than the measured one. This indicates that, as for the other spin-orbit interaction (SOI)-induced phenomena in 3dd itinerant magnets such as the orbital magnetic magnetization and magnetocrystalline anisotropy, the on-site electron-electron correlation, though moderate only, should be taken into account properly in order to get the correct anomalous Hall conductivity. The intrinsic σxyH\sigma_{xy}^H and the number of valence electrons (NeN_e) have also been calculated as a function of the Fermi energy (EFE_F). A sign change is predicted at EF=0.38E_F = -0.38 eV (Ne=9.57N_e = 9.57), and this explain qualitatively why the theoretical and experimental σxyH\sigma_{xy}^H values for Fe and Co are positive. It is also predicted that fcc Ni(1x)_{(1-x)}Co(Fe,Cu)x_x alloys with xx being small, would also have the negative σxyH\sigma_{xy}^H with the magnitude being in the range of 5001400500\sim 1400 Ω1\Omega^{-1}cm1^{-1}. The most pronounced effect of including the on-site Coulomb interaction is that all the dd-dominant bands are lowered in energy relative to the EFE_F by about 0.3 eV, and consequently, the small minority spin X2_2 hole pocket disappears. The presence of the small X2_2 hole pocket in the GGA calculations is attributed to be responsible for the large discrepancy in the σxyH\sigma_{xy}^H between theory and experiment.Comment: 7 pages, 3 figures; Accepted for publication in Physical Review

    Necessary and sufficient condition for longitudinal magnetoresistance

    Full text link
    Since the Lorentz force is perpendicular to the magnetic field, it should not affect the motion of a charge along the field. This argument seems to imply absence of longitudinal magnetoresistance (LMR) which is, however, observed in many materials and reproduced by standard semiclassical transport theory applied to particular metals. We derive a necessary and sufficient condition on the shape of the Fermi surface for non-zero LMR. Although an anisotropic spectrum is a pre-requisite for LMR, not all types of anisotropy can give rise to the effect: a spectrum should not be separable in any sense. More precisely, the combination kρvϕ/vρk_{\rho}v_{\phi}/v_{\rho}, where kρk_\rho is the radial component of the momentum in a cylindrical system with the z-axis along the magnetic field and vρ(vϕv_{\rho} (v_{\phi}) is the radial (tangential) component of the velocity, should depend on the momentum along the field. For some lattice types, this condition is satisfied already at the level of nearest-neighbor hopping; for others, the required non-separabality occurs only if next-to-nearest-neighbor hopping is taken into account.Comment: 7 pages, 2 figure
    corecore