2,015 research outputs found
Eco-aesthetic dimensions: Herbert Marcuse, ecollogy and art
In his last book, The Aesthetic Dimension (1978), Marcuse argued that a concern for aesthetics is justified when political change is unlikely. But the relation between aesthetics and politics is oblique: “Art cannot change the world, but it can contribute to changing the consciousness … of the men and women who could change the world.” (p. 33). Marcuse also linked his critique of capitalism to environmentalism in the early 1970s: “the violation of the Earth is a vital aspect of the counterrevolution.” (Ecology and Revolution, in The New Left and the 1960s, Collected Papers 3, 2005, p. 173). This article revisits Marcuse’s ideas on aesthetics and ecology, and reviews two recent art projects which engage their audiences in ecological issues: The Jetty Project (2014) by Wolfgang Weileder—which used recycled material and community participation to construct a temporary monument within a wider conservation project on the Tyne, N-E England—and Fracking Futures by HeHe (Helen Evans and Heiko Hansen)—which turned the interior of the gallery at FACT, Liverpool, into what appeared to be a fracking site. The aim is not to evaluate the projects, nor to test the efficacy of Marcuse’s ideas, more to ask again whether art has a role in a shift of attitude which might contribute to dealing with the political and economic causes of climate change
Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity
We study the interaction of an atom with a quantum guided field in a weakly
driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian
and derive the density-matrix equations for the combined atom-cavity system. We
calculate the mean photon number, the second-order photon correlation function,
and the atomic excited-state population. We show that, due to the confinement
of the guided cavity field in the fiber cross-section plane and in the space
between the FBG mirrors, the presence of the atom in the FBG cavity can
significantly affect the mean photon number and the photon statistics even
though the cavity finesse is moderate, the cavity is long, and the probe field
is weak.Comment: Accepted for Phys. Rev.
Bound whispering gallery modes in circular arrays of dielectric spherical particles
Low-dimensional ordered arrays of optical elements can possess bound modes
having an extremely high quality factor. Typically, these arrays consist of
metal elements which have significantly high light absorption thus restricting
performance. In this paper we address the following question: can bound modes
be formed in dielectric systems where the absorption of light is negligible?
Our investigation of circular arrays of spherical particles shows that (1) high
quality modes in an array of 10 or more particles can be attained at least for
a refractive index , so optical materials like TiO or GaAs can
be used; (2) the most bound modes have nearly transverse polarization
perpendicular to the circular plane; (3) in a particularly interesting case of
TiO particles (rutile phase, ), the quality factor of the most
bound mode increases almost by an order of magnitude with the addition of 10
extra particles, while for particles made of GaAs the quality factor increases
by almost two orders of magnitude with the addition of ten extra particles. We
hope that this preliminary study will stimulate experimental investigations of
bound modes in low-dimensional arrays of dielectric particles.Comment: Submitted to Physical Review
Resonant Bend Loss in Leakage Channel Fibers
Leakage channel fibers, designed to suppress higher-order modes, demonstrate
resonant power loss at certain critical radii of curvature. Outside the
resonance, the power recovers to the levels offset by the usual mechanism of
bend-induced loss. Using C-imaging, we experimentally characterize this
anomaly and identify the corresponding physical mechanism as the radiative
decay of the fundamental mode mediated by the resonant coupling to a cladding
mode.Comment: 3 pages, 4 figures, submitted to Optics Letter
Propagation of surface plasmons on plasmonic Bragg gratings
We use coupled-mode theory to describe the scattering of a surface-plasmon
polariton (SPP) from a square wave grating (Bragg grating) of finite extension
written on the surface of either a metal-dielectric interface or a
dielectric-dielectric interface covered with a patterned graphene sheet. We
find analytical solutions for the reflectance and transmittance of SPP's when
only two modes (forward- and back-scattered) are considered. We show that in
both cases the reflectance spectrum presents stop-bands where the SPP is
completely back-scattered, if the grating is not too shallow. In addition, the
reflectance coefficient shows Fabry-P\'erot oscillations when the frequency of
the SPP is out of the stop-band region. For a single dielectric well, we show
that there are frequencies of transmission equal to 1. We also provide simple
analytical expression for the different quantities in the electrostatic limit.N.M.R.P. acknowledges Bruno Amorim for discussions in the early stage of this work. Both authors thank D. T. Alves for corrections. N.M.R.P. acknowledges support from the European Commission through the Project "Graphene-Driven Revolutions in ICT and Beyond" (Ref. No. 785219); COMPETE2020, PORTUGAL2020, FEDER; and the Portuguese Foundation for Science and Technology (FCT) through Project POCI-01-0145-FEDER-028114 and in the framework of the Strategic Financing UID/FIS/04650/2013
Comparison of Quantum and Classical Local-field Effects on Two-Level Atoms in a Dielectric
The macroscopic quantum theory of the electromagnetic field in a dielectric
medium interacting with a dense collection of embedded two-level atoms fails to
reproduce a result that is obtained from an application of the classical
Lorentz local-field condition. Specifically, macroscopic quantum
electrodynamics predicts that the Lorentz redshift of the resonance frequency
of the atoms will be enhanced by a factor of the refractive index n of the host
medium. However, an enhancement factor of (n*n+2)/3 is derived using the
Bloembergen procedure in which the classical Lorentz local-field condition is
applied to the optical Bloch equations. Both derivations are short and
uncomplicated and are based on well-established physical theories, yet lead to
contradictory results. Microscopic quantum electrodynamics confirms the
classical local-field-based results. Then the application of macroscopic
quantum electrodynamic theory to embedded atoms is proved false by a specific
example in which both the correspondence principle and microscopic theory of
quantum electrodynamics are violated.Comment: Published version with rewritten abstract and introductio
Unified theory for Goos-H\"{a}nchen and Imbert-Fedorov effects
A unified theory is advanced to describe both the lateral Goos-H\"{a}nchen
(GH) effect and the transverse Imbert-Fedorov (IF) effect, through representing
the vector angular spectrum of a 3-dimensional light beam in terms of a 2-form
angular spectrum consisting of its 2 orthogonal polarized components. From this
theory, the quantization characteristics of the GH and IF displacements are
obtained, and the Artmann formula for the GH displacement is derived. It is
found that the eigenstates of the GH displacement are the 2 orthogonal linear
polarizations in this 2-form representation, and the eigenstates of the IF
displacement are the 2 orthogonal circular polarizations. The theoretical
predictions are found to be in agreement with recent experimental results.Comment: 15 pages, 3 figure
Quantum computation by quantum-like systems
Using a quantumlike description for light propagation in nonhomogeneous
optical fibers, quantum information processing can be implemented by optical
means. Quantum-like bits (qulbits) are associated to light modes in the optical
fiber and quantum gates to segments of the fiber providing an unitary
transformation of the mode structure along a space direction. Simulation of
nonlinear quantum effects is also discussed.Comment: 12 pages, Late
- …