8,845 research outputs found

    Searching for Ground Truth: a stepping stone in automating genre classification

    Get PDF
    This paper examines genre classification of documents and its role in enabling the effective automated management of digital documents by digital libraries and other repositories. We have previously presented genre classification as a valuable step toward achieving automated extraction of descriptive metadata for digital material. Here, we present results from experiments using human labellers, conducted to assist in genre characterisation and the prediction of obstacles which need to be overcome by an automated system, and to contribute to the process of creating a solid testbed corpus for extending automated genre classification and testing metadata extraction tools across genres. We also describe the performance of two classifiers based on image and stylistic modeling features in labelling the data resulting from the agreement of three human labellers across fifteen genre classes.

    The efficient computation of transition state resonances and reaction rates from a quantum normal form

    Get PDF
    A quantum version of a recent formulation of transition state theory in {\em phase space} is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for multi-degree-of-freedom systems where other approaches are no longer feasible.Comment: 4 pages, 3 figures, revtex

    High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric

    Get PDF
    Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO2_{2} and TiO2_{2} in a triple-layer configuration, we achieve the first CNT FETs with consistent and narrowly distributed memory effects in their transfer characteristics.Comment: 6 pages, 3 figures; added one reference, text reformatted with smaller addition

    Decoding the multifaceted HIV-1 virus-host interactome

    Get PDF
    Recently in BMC Medical Genomics, Tozeren and colleagues have uncovered virus-host interactions by searching for conserved peptide motifs in HIV and human proteins. Their computational model provides a novel perspective in the interpretation of high-throughput data on the HIV-host interactome

    The interaction between colloids in polar mixtures above Tc

    Full text link
    We calculate the interaction potential between two colloids immersed in an aqueous mixture containing salt near or above the critical temperature. We find an attractive interaction far from the coexistence curve due to the combination of preferential solvent adsorption at the colloids' surface and preferential ion solvation. We show that the ion-specific interaction strongly depends on the amount of salt added as well as on the mixture composition. Our results are in accord with recent experiments. For a highly antagonistic salt of hydrophilic anions and hydrophobic cations, a repulsive interaction at an intermediate inter-colloid distance is predicted even though both the electrostatic and adsorption forces alone are attractive.Comment: 9 pages, 6 figure

    Effective Potential and Thermodynamics for a Coupled Two-Field Bose Gas Model

    Full text link
    We study the thermodynamics of a two-species homogeneous and dilute Bose gas that is self-interacting and quadratically coupled to each other. We make use of field theoretical functional integral techniques and evaluate the one-loop finite temperature effective potential for this system considering the resummation of the leading order temperature dependent as well as infrared contributions. The symmetry breaking pattern associated to the model is then studied by considering different values of self and inter-species couplings. We pay special attention to the eventual appearance of reentrant phases and/or shifts in the observed critical temperatures as compared to the monoatomic (one-field Bose) case.Comment: 21 pages, 4 eps figure

    UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies

    Full text link
    Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb collisions at the Large-Hadron-Collider (LHC) energies are investigated with the ultra-relativistic quantum molecular dynamics model combined with a correlation afterburner. The transverse momentum dependence of the Pratt-Bertsch HBT radii RlongR_{long}, RoutR_{out}, and RsideR_{side} is extracted from a three-dimensional Gaussian fit to the correlator in the longitudinal co-moving system. In the p+p case, the dependence of correlations on the charged particle multiplicity and formation time is explored and the data allows to constrain the formation time in the string fragmentation to τf0.8\tau_f \leq 0.8 fm/c. In the Pb+Pb case, it is found that RoutR_{out} is overpredicted by nearly 50%. The LHC results are also compared to data from the STAR experiment at RHIC. For both energies we find that the calculated Rout/RsideR_{out}/R_{side} ratio is always larger than data, indicating that the emission in the model is less explosive than observed in the data.Comment: 9 pages, 4 figures, 1 table. Talk given by Qingfeng Li at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon

    Full text link
    We have directly observed reversal of the polarity of charged surfaces in water upon the addition of tri- and quadrivalent ions using atomic force microscopy. The bulk concentration of multivalent ions at which charge inversion reversibly occurs depends only very weakly on the chemical composition, surface structure, size and lipophilicity of the ions, but is dominated by their valence. These results support the theoretical proposal that spatial correlations between ions are the driving mechanism behind charge inversion.Comment: submitted to PRL, 26-04-2004 Changed the presentation of the theory at the end of the paper. Changed small error in estimate of prefactor ("w" in first version) of equation

    On the Phenomenology of Hydrodynamic Shear Turbulence

    Full text link
    The question of a purely hydrodynamic origin of turbulence in accretion disks is reexamined, on the basis of a large body of experimental and numerical evidence on various subcritical (i.e., linearly stable) hydrodynamic flows. One of the main points of this paper is that the length scale and velocity fluctuation amplitude which are characteristic of turbulent transport in these flows scale like Rem1/2Re_m^{-1/2}, where RemRe_m is the minimal Reynolds number for the onset of fully developed turbulence. From this scaling, a simple explanation of the dependence of RemRe_m with relative gap width in subcritical Couette-Taylor flows is developed. It is also argued that flows in the shearing sheet limit should be turbulent, and that the lack of turbulence in all such simulations performed to date is most likely due to a lack of resolution, as a consequence of the effect of the Coriolis force on the large scale fluctuations of turbulent flows. These results imply that accretion flows should be turbulent through hydrodynamic processes. If this is the case, the Shakura-Sunyaev α\alpha parameter is constrained to lie in the range 10310110^{-3}-10^{-1} in accretion disks, depending on unknown features of the mechanism which sustains turbulence. Whether the hydrodynamic source of turbulence is more efficient than the MHD one where present is an open question.Comment: 31 pages, 3 figures. Accepted for publication in Ap
    corecore