7 research outputs found

    Comparative Study of Adipose-Derived Stem Cells From Abdomen and Breast

    No full text
    Background: Abdominal tissue enriched with adipose-derived stem cells (ASCs) is often used in cell-assisted lipotransfer procedures for breast reconstruction. However, as the tissue microenvironment and stem cell niche play important roles in defining the characteristics of the resident cells, it is hypothesized that the stem cell population present in the donor abdominal tissue has dissimilar properties as compared with the cells in the recipient breast tissue, which may ultimately affect the long-term success of the graft. Methods: Adipose-derived stem cells were isolated from breast and abdominal fat tissues and characterized for mesenchymal-specific cell surface markers, and their population doubling, colony-forming capabilities, and proliferative properties were compared. The multilineage potential of both cell populations was also investigated. Results: Adipose-derived stem cells from both tissue sites were found to possess similar marker expression and multilineage differentiation potential. However, breast fatā€“derived ASCs were observed to have a higher self-renewal capability and an unstable population doubling as compared with abdominal fat-derived ASCs. Gene expression studies revealed that the breast fatā€“derived ASCs were predisposed to the osteogenic lineage and the abdominal fatā€“derived ASCs to the adipogenic lineage. Conclusions: Cells derived from both fat tissues possess different characteristics in terms of their growth kinetics and predisposition to the osteolineages and adipolineages. In particular, ASCs from the abdominal tissue appear to contribute to adipose tissue turnover, whereas ASCs from breast tissue, if used for cell-assisted fat grafting, may potentially be responsible for complications in fat grafting, such as oil cysts, calcifications, fat necrosis, and tumors.Accepted versio

    From flab to fab : transforming surgical waste into an effective bioactive coating material

    No full text
    Cellular events are regulated by the interaction between integrin receptors in the cell membrane and the extracellular matrix (ECM). Hence, ECM, as a material, can potentially play an instructive role in cellā€“material interactions. Currently, adipose tissue in the form of lipoaspirate is often discarded. Here, it is demonstrated how our chemical-free decellularization method could be used to obtain ECM from human lipoaspirate waste material. These investigations show that the main biological components are retained in the lipoaspirate-derived ECM (LpECM) material and that this LpECM material could subsequently be used as a coating material to confer bioactivity to an otherwise inert biodegradable material (i.e., polycaprolactone). Overall, lipoaspirate material, a complex blend of endogenous proteins, is effectively used a bioactive coating material. This work is an important stepping-stone towards the development of biohybrid scaffolds that contain cellular benefits without requiring the use of additional biologics based on commonly discarded lipoaspirate material

    Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice

    No full text
    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing.status: publishe

    Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice

    No full text
    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing.Accepted versio

    Angiopoietin-like 4 induces a Ī²-catenin-mediated upregulation of ID3 in fibroblasts to reduce scar collagen expression

    No full text
    In adult skin wounds, collagen expression rapidly re-establishes the skin barrier, although the resultant scar is aesthetically and functionally inferior to unwounded tissue. Although TGFĪ² signaling and fibroblasts are known to be responsible for scar-associated collagen production, there are currently no prophylactic treatments for scar management. Fibroblasts in crosstalk with wound keratinocytes orchestrate collagen expression, although the precise paracrine pathways involved remain poorly understood. Herein, we showed that the matricellular protein, angiopoietin-like 4 (ANGPTL4), accelerated wound closure and reduced collagen expression in diabetic and ANGPTL4-knockout mice. Similar observations were made in wild-type rat wounds. Using human fibroblasts as a preclinical model for mechanistic studies, we systematically elucidated that ANGPTL4 binds to cadherin-11, releasing membrane-bound Ī²-catenin which translocate to the nucleus and transcriptionally upregulate the expression of Inhibitor of DNA-binding/differentiation protein 3 (ID3). ID3 interacts with scleraxis, a basic helix-loop-helix transcription factor, to inhibit scar-associated collagen types 1Ī±2 and 3Ī±1 production by fibroblasts. We also showed ANGPTL4 interaction with cadherin-11 in human scar tissue. Our findings highlight a central role for matricellular proteins such as ANGPTL4 in the attenuation of collagen expression and may have a broader implication for other fibrotic pathologies.ASTAR (Agency for Sci., Tech. and Research, Sā€™pore)Published versio

    Early controlled release of peroxisome proliferator-activated receptor Ī²/Ī“ agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment

    No full text
    Diabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPARĪ²/Ī“ as a valuable pharmacologic wound-healing target, the therapeutic potential of PPARĪ²/Ī“ agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure. We showed that double-layer encapsulated GW microparticles (PLLA:PLGA:GW) provided an earlier and sustained dose of GW to the wound and reduced the oxidative wound microenvironment to accelerate healing, in contrast to single-layered PLLA:GW microparticles. The underlying mechanism involved an early GW-mediated activation of PPARĪ²/Ī“ that stimulated GPx1 and catalase expression in fibroblasts. GPx1 and catalase scavenged excessive H2O2 accumulation in diabetic wound beds, prevented H2O2-induced ECM modification and facilitated keratinocyte migration. The microparticles with early and sustained rate of GW release had better therapeutic wound healing activity. The present study underscores the importance of drug release kinetics on the therapeutic efficacy of the drug and warrants investigations to better appreciate the full potential of controlled drug release.Accepted versio
    corecore