9,580 research outputs found

    Photovoltaic and Rectification Currents in Quantum Dots

    Full text link
    We investigate theoretically and experimentally the statistical properties of dc current through an open quantum dot subject to ac excitation of a shape-defining gate. The symmetries of rectification current and photovoltaic current with respect to applied magnetic field are examined. Theory and experiment are found to be in good agreement throughout a broad range of frequency and ac power, ranging from adiabatic to nonadiabatic regimes.Comment: 4 pages, 3 figures; related articles at http://marcuslab.harvard.ed

    Thermodynamics and Phase Structure of the Two-Flavor Nambu--Jona-Lasinio Model Beyond Large-N_c

    Full text link
    The optimized perturbation theory (OPT) method is applied to the SU(2)SU(2) version of the Nambu--Jona-Lasinio (NJL) model both at zero and at finite temperature and/or density. At the first nontrivial order the OPT exhibits a class of 1/N_c corrections which produce nonperturbative results that go beyond the standard large-N_c, or mean-field approximation. The consistency of the OPT method with the Goldstone theorem at this order is established, and appropriate OPT values of the basic NJL (vacuum) parameters are obtained by matching the pion mass and decay constant consistently. Deviations from standard large-N_c relations induced by OPT at this order are derived, for example, for the Gell--Mann-Oakes-Renner relation. Next, the results for the critical quantities and the phase diagram of the model, as well as a number of other thermodynamical quantities of interest, are obtained with OPT and then contrasted with the corresponding results at large N_c.Comment: 29 pages, 20 figures, revtex. Minor corrections. In press Phys. Rev.

    The Resonant Exchange Qubit

    Full text link
    We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment

    Hyperfine-mediated gate-driven electron spin resonance

    Full text link
    An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.Comment: related papers available at http://marcuslab.harvard.ed

    Bremsstrahlung from a microscopic model of relativistic heavy ion collisions

    Get PDF
    We compute bremsstrahlung arising from the acceleration of individual charged baryons and mesons during the time evolution of high-energy Au+Au collisions at the Relativistic Heavy Ion Collider using a microscopic transport model. We elucidate the connection between bremsstrahlung and charge stop- ping by colliding artificial pure proton on pure neutron nuclei. From the inten- sity of low energy bremsstrahlung, the time scale and the degree of stopping could be accurately extracted without measuring any hadronic observables. PACS: 25.75.-q, 13.85.Q

    Dynamic Nuclear Polarization in Double Quantum Dots

    Get PDF
    We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.Comment: 4 pages, 2 figure

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed

    Tectonic Geomorphology and Volcano-Tectonic Interaction in the Eastern Boundary of the Southern Cascades (Hat Creek Graben Region), California, USA

    Get PDF
    The eastern boundary of the Southern Cascades (Hat Creek Graben region), California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The morphology of the region is a result of plate motions associated with different tectonic provinces, faulting, and recurring volcanic activity, making it an ideal place to study the interrelationship between tectonics, volcanoes, and geomorphology. We use the morphometry and spatial distribution of volcanoes and their interaction with regional structures to understand howlong termregional deformation can affect volcano evolution. Adatabase of volcanic centers and structures was created frominterpretations of digital elevation models. Volcanic centers were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the larger and smaller edifices, and revealed an evolutionary trend. Poisson Nearest Neighbor analysis showed that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6 km of one another were found, revealing that preferential north-northwest directedpathways control the transport of magma fromthe source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater and collapse scar openings are perpendicular to the north northwest-directed maximum horizontal stress, expected for extensional environments with dominant normal faulting. Early in the history of a volcano or volcano cluster, melt propagates to the surface using the easiest and most efficient pathway, mostly controlled by the pre-existing normal faults and near-surface stress fields, as indicated by the pervasive vent alignments. Volcano growth continues to be dependent on the regional structures as indicated by the opening directions, suggesting structural control on the growth of the volcanic edifices. The results present a particularly well-defined case in which extension of a volcanic region is accommodated mostly by faulting, and only partly by intrusion to formvolcanoes. This is attributed to a low magma supply rate.</p
    corecore