250 research outputs found

    An autonomous electrochemical discovery robot that utilises probabilistic algorithms: probing the redox behaviour of inorganic materials

    Get PDF
    The discovery of new electroactive materials is slow due to the large combinatorial chemical space of possible experiments. Efficient exploration of redox‐active chemical space requires a machine learning assisted robotic platform with real‐time feedback. Here, we developed a closed‐loop robotic platform which is capable of synthesis and electrochemical characterisation controlled using a probabilistic algorithm. This was used to probe the redox behaviour of different polyoxometalates (POMs) precursors and explore the formation of redox‐active coordination complexes. The system can run accurate analytical electrochemical measurements whilst maintaining the performance and accuracy of both the working and reference electrodes. The platform successfully ran and analysed 336 coordination chemistry reactions by performing ca. 2500 cyclic voltammetry (CV) scans for analysis and electrode cleaning. Overall, the platform carried out over 9900 operations in 350 hours at a rate of 28 operations per hour, and we identified 24 complex solutions which showed significantly different redox activity. Experiments were performed using a universal chemical synthesis language (χDL) with variable inputs. The platform was used autonomously to investigate a range of POM precursor materials demonstrating 45 % increase in capacitance. The experiments ran for 36 hours with more than 6400 operations during which we analysed 200 POM precursor solutions

    On the Relationship between Yang-Mills Theory and Gravity and its Implication for Ultraviolet Divergences

    Get PDF
    String theory implies that field theories containing gravity are in a certain sense `products' of gauge theories. We make this product structure explicit up to two loops for the relatively simple case of N=8 supergravity four-point amplitudes, demonstrating that they are `squares' of N=4 super-Yang-Mills amplitudes. This is accomplished by obtaining an explicit expression for the DD-dimensional two-loop contribution to the four-particle S-matrix for N=8 supergravity, which we compare to the corresponding N=4 Yang-Mills result. From these expressions we also obtain the two-loop ultraviolet divergences in dimensions D=7 through D=11. The analysis relies on the unitarity cuts of the two theories, many of which can be recycled from a one-loop computation. The two-particle cuts, which may be iterated to all loop orders, suggest that squaring relations between the two theories exist at any loop order. The loop-momentum power-counting implied by our two-particle cut analysis indicates that in four dimensions the first four-point divergence in N=8 supergravity should appear at five loops, contrary to the earlier expectation, based on superspace arguments, of a three-loop counterterm.Comment: Latex, 52 pages, discussion of 2 loop divergences in D=8,10 adde

    Multi-Leg One-Loop Gravity Amplitudes from Gauge Theory

    Get PDF
    By exploiting relations between gravity and gauge theories, we present two infinite sequences of one-loop n-graviton scattering amplitudes: the `maximally helicity-violating' amplitudes in N=8 supergravity, and the `all-plus' helicity amplitudes in gravity with any minimally coupled massless matter content. The all-plus amplitudes correspond to self-dual field configurations and vanish in supersymmetric theories. We make use of the tree-level Kawai-Lewellen-Tye (KLT) relations between open and closed string theory amplitudes, which in the low-energy limit imply relations between gravity and gauge theory tree amplitudes. For n < 7, we determine the all-plus amplitudes explicitly from their unitarity cuts. The KLT relations, applied to the cuts, allow us to extend to gravity a previously found `dimension-shifting' relation between (the cuts of) the all-plus amplitudes in gauge theory and the maximally helicity-violating amplitudes in N=4 super-Yang-Mills theory. The gravitational version of the relation lets us determine the n < 7 N=8 supergravity amplitudes from the all-plus gravity amplitudes. We infer the two series of amplitudes for all n from their soft and collinear properties, which can also be derived from gauge theory using the KLT relations.Comment: Minor errors corrected, Latex, 53 page

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
    • 

    corecore