32 research outputs found

    Fast Computation of Voigt Functions via Fourier Transforms

    Get PDF
    This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power of the computational effort. Because of its use of highly vectorizable operations for its core, it can be implemented very efficiently in scripting language environments which provide fast vector libraries. The availability of the derivatives makes it suitable as a function generator for non-linear fitting procedures.Comment: 8 pages, 1 figur

    A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    Full text link
    In Monte Carlo particle transport codes, it is often important to adjust reaction cross sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analogous Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross section change. This makes it possible to increase the cross section of nuclear reactions by factors exceeding 10^4 (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful, for example, in problems that involve computation of particle penetration deep into a target, such as occurs in atmospheric showers or in shielding

    Enhanced adhesion of films to semiconductors or metals by high energy bombardment

    Get PDF
    Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70

    Device-Orientation Effects on Multiple-Bit Upset in 65-nm SRAMs

    Get PDF
    Heavy ion irradiations have been performed: a) SEU varies little with angle of ion incidence b) MBU depend on the device orientation. The MBU response depends on the well orientation of the device. MRED simulation of an omni-directional GEO environment shows the MBU response to be a combination of response from different orientations. Testing and simulation must account for multiple orientations
    corecore