40 research outputs found

    Fast Computation of Voigt Functions via Fourier Transforms

    Get PDF
    This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power of the computational effort. Because of its use of highly vectorizable operations for its core, it can be implemented very efficiently in scripting language environments which provide fast vector libraries. The availability of the derivatives makes it suitable as a function generator for non-linear fitting procedures.Comment: 8 pages, 1 figur

    An Algorithm for Computing Screened Coulomb Scattering in Geant4

    Full text link
    An algorithm has been developed for the Geant4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screening, which is good for nuclear straggling and implantation problems. This will allow many of the applications of the TRIM and SRIM codes to be extended into the much more general Geant4 framework where nuclear and other effects can be included.Comment: 19 pages, 6 figures; corrected to rerferee comments, typo in equation 5 fixe

    A probability-conserving cross-section biasing mechanism for variance reduction in Monte Carlo particle transport calculations

    Full text link
    In Monte Carlo particle transport codes, it is often important to adjust reaction cross sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analogous Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross section change. This makes it possible to increase the cross section of nuclear reactions by factors exceeding 10^4 (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful, for example, in problems that involve computation of particle penetration deep into a target, such as occurs in atmospheric showers or in shielding

    Enhanced adhesion of films to semiconductors or metals by high energy bombardment

    Get PDF
    Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70

    Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF

    Get PDF
    The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination

    Application of RADSAFE to Model Single Event Upset Response of a 0.25 micron CMOS SRAM

    Get PDF
    The RADSAFE simulation framework is described and applied to model Single Event Upsets (SEU) in a 0.25 micron CMOS 4Mbit Static Random Access Memory (SRAM). For this circuit, the RADSAFE approach produces trends similar to those expected from classical models, but more closely represents the physical mechanisms responsible for SEU in the SRAM circuit

    Device-Orientation Effects on Multiple-Bit Upset in 65-nm SRAMs

    Get PDF
    Heavy ion irradiations have been performed: a) SEU varies little with angle of ion incidence b) MBU depend on the device orientation. The MBU response depends on the well orientation of the device. MRED simulation of an omni-directional GEO environment shows the MBU response to be a combination of response from different orientations. Testing and simulation must account for multiple orientations

    Low-Energy Proton Testing Methodology

    Get PDF
    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation
    corecore