69 research outputs found

    The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function

    Get PDF
    Leflunomide, a potent disease-modifying antirheumatic drug used in the treatment of rheumatoid arthritis (RA), exhibits anti-inflammatory, antiproliferative and immunosuppressive effects. Although most of the beneficial effects of leflunomide have been attributed to its antimetabolite activity, mainly in T cells, other targets accounting for its potency might still exist. Because of mounting evidence for a prominent role of dendritic cells (DCs) in the initiation and maintenance of the immune response in RA, we analyzed the effect of the active metabolite of leflunomide (A77 1726; LEF-M) on phenotype and function of human myleloid DCs at several stages in their life cycle. Importantly, DCs differentiated in the presence of LEF-M exhibited an altered phenotype, with largely reduced surface expression of the critical co-stimulatory molecules CD40 and CD80. Furthermore, treatment of DCs during the differentiation or maturation phase with LEF-M aborted successful DC maturation. Exogenous addition of uridine revealed that DC modulation by LEF-M was independent of its proposed ability as an antimetabolite. In addition, the ability of DCs to initiate T-cell proliferation and to produce the proinflammatory cytokines IL-12 and tumour necrosis factor-α was markedly impaired by LEF-M treatment. As a molecular mechanism, transactivation of nuclear factor-κB, an transcription factor essential for proper DC function, was completely suppressed in DCs treated with LEF-M. These data indicate that interference with several aspects of DC function could significantly contribute to the beneficial effects of leflunomide in inflammatory diseases, including RA

    Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk

    Get PDF
    Aims High-density lipoproteins (HDLs) are considered as anti-atherogenic. Recent experimental findings suggest that their biological properties can be modified in certain clinical conditions by accumulation of serum amyloid A (SAA). The effect of SAA on the association between HDL-cholesterol (HDL-C) and cardiovascular outcome remains unknown. Methods and results We examined the association of SAA and HDL-C with mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, which included 3310 patients undergoing coronary angiography. To validate our findings, we analysed 1255 participants of the German Diabetes and Dialysis study (4D) and 4027 participants of the Cooperative Health Research in the Region of Augsburg (KORA) S4 study. In LURIC, SAA concentrations predicted all-cause and cardiovascular mortality. In patients with low SAA, higher HDL-C was associated with lower all-cause and cardiovascular mortality. In contrast, in patients with high SAA, higher HDL-C was associated with increased all-cause and cardiovascular mortality, indicating that SAA indeed modifies the beneficial properties of HDL. We complemented these clinical observations by in vitro experiments, in which SAA impaired vascular functions of HDL. We further derived a formula for the simple calculation of the amount of biologically ‘effective' HDL-C based on measured HDL-C and SAA from the LURIC study. In 4D and KORA S4 studies, we found that measured HDL-C was not associated with clinical outcomes, whereas calculated ‘effective' HDL-C significantly predicted better outcome. Conclusion The acute-phase protein SAA modifies the biological effects of HDL-C in several clinical conditions. The concomitant measurement of SAA is a simple, useful, and clinically applicable surrogate for the vascular functionality of HD

    A randomized, placebo-controlled, double-blind, prospective trial to evaluate the effect of vildagliptin in new-onset diabetes mellitus after kidney transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New-onset diabetes mellitus after transplantation (NODAT), a frequent and serious complication after transplantation, is associated with decreased graft and patient survival. Currently, it is diagnosed and treated primarily according to existing guidelines for type II diabetes. To date, only a few trials have studied antidiabetic drugs in patients with NODAT. Vildagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor that improves pancreatic islet function by enhancing both α- and β-cell responsiveness to increased blood glucose. Experimental data show potential protective effects of DPP-4 inhibitors on islet function after exogenous stress stimuli including immunosuppressants. Therefore, the therapy of NODAT with this class of compounds seems attractive. At present, vildagliptin is used to treat type II diabetes as monotherapy or in combination with other antidiabetic drugs, since that it efficiently decreases glycated hemoglobin (HbA1c) values. Additionally, vildagliptin has been shown to be safe in patients with moderately impaired kidney function. This study will evaluate the safety and efficacy of vildagliptin monotherapy in renal transplant recipients with recently diagnosed NODAT.</p> <p>Methods/Design</p> <p>This study is a randomized, placebo-controlled, double-blind, prospective phase II trial. Using the results of routinely performed oral glucose tolerance tests (OGTT) in stable renal transplant patients at our center, we will recruit patients without a history of diabetes and a 2 h glucose value surpassing 200 mg/dl (11.1 mmol/l). They are randomized to receive either 50 mg vildagliptin or placebo once daily. A total of 32 patients with newly diagnosed NODAT will be included. The primary endpoint is the difference in the 2 h glucose value between baseline and the repeated OGTT performed 3 months after treatment start, compared between the vildagliptin- and the placebo-group. Secondary endpoints include changes in HbA1c and fasting plasma glucose (FPG). The safety of vildagliptin in renal transplant patients will be assessed by the number of symptomatic hypoglycemic episodes (glucose <72 mg/dl or 4 mmol/l), the number of adverse events, and possible medication-associated side-effects.</p> <p>Discussion</p> <p>NODAT is a severe complication after kidney transplantation. Few trials have assessed the safety and efficacy of antidiabetic drugs for these patients. The purpose of this study is to assess the safety and efficacy of vildagliptin in renal transplant patients with NODAT.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00980356</p

    Development of crescentic membranoproliferative glomerulonephritis after COVID-19 vaccination.

    No full text
    Membranoproliferative glomerulonephritis (MPGN) comprises a histologic pattern of glomerular injury with different underlying diseases. Here we report on a 47-year-old female with rapidly progressive glomerulonephritis (RPGN) on top of a previously diagnosed idiopathic MPGN after receiving the first dose of the Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccine. After aggressive immunosuppression her serum creatinine returned to normal values, along with reduction of proteinuria. Recently, numerous publications have reported an association of glomerular diseases with COVID-19 vaccination. Our case presents to the best of our knowledge the first occurrence of possible association of COVID-19 mRNA vaccination with a crescentic form of MPGN

    Impact of Systemic Volume Status on Cardiac Magnetic Resonance T1 Mapping

    No full text
    Abstract Diffuse myocardial fibrosis is a key pathophysiologic feature in heart failure and can be quantified by cardiac magnetic resonance (CMR) T1 mapping. However, increases in myocardial free water also prolong native T1 times and may impact fibrosis quantification. Thus far, the impact of systemic patient volume status remains unclear. In this study, native T1 time by CMR was investigated in hemodialysis (HD) patients (n = 37) and compared with healthy controls (n = 35). Volume status was quantified by bioimpedance spectroscopy and correlated with CMR T1 time. While no differences between HD patients and controls were present with regard to age (p = 0.180), height (p = 0.535), weight (p = 0.559) and left ventricular (LV) ejection fraction (p = 0.273), cardiac size was significantly larger in HD patients (LV end-diastolic volume 164 ± 53 vs. 132 ± 26 ml, p = 0.002). Fluid overloaded HD patients had significantly longer native T1 times than normovolemic HD patients and healthy controls (1,042 ± 46 vs. 1,005 ± 49 vs. 998 ± 47 ms, p = 0.030). By regression analysis, T1 time was significantly associated with fluid status (r = 0.530, p = 0.009, post-HD fluid status). Our data strongly indicate that native CMR T1 time is significantly influenced by systemic volume status. As fluid overload is common in patients with cardiovascular diseases, this finding is important and requires further study

    Molecular remodeling of the renin-angiotensin system after kidney transplantation

    No full text
    Objective: We aimed at assessing the molecular adaptation of the renin-angiotensin system (RAS) after successful kidney transplantation (KTX). Materials and methods: In this prospective, exploratory study we analyzed 12 hemodialysis (HD) patients, who received a KTX and had excellent graft function six to 12 months thereafter. The concentrations of plasma Angiotensin (Ang) peptides (Ang I, Ang II, Ang-(17), Ang-(15), Ang-(28), Ang-(38)) were simultaneously quantified with a novel mass spectrometry-based method. Further, renin and aldosterone concentrations were determined by standard immunoassays. Results: Ang values showed a strong inter-individual variability among HD patients. Yet, despite a continued broad dispersion of Ang values after KTX, a substantial improvement of the renin/Ang II correlation was observed in patients without RAS blockade or on angiotensin receptor blocker (HD: renin/Ang II R2 = 0.660, KTX: renin/Ang II R2 = 0.918). Ang-(17) representing the alternative RAS axis was only marginally detectable both on HD and after KTX. Conclusions: Following KTX, renin-dependent Ang II formation adapts in non-ACE inhibitor-treated patients. Thus, a largely normal RAS regulation is reconstituted after successful KTX. However, individual Ang concentration variations and a lack of potentially beneficial alternative peptides after KTX call for individualized treatment. The long-term post-transplant RAS regulation remains to be determined.(VLID)456375
    • …
    corecore