124 research outputs found
I-Motif Structures Formed in the Human c-MYC Promoter Are Highly Dynamic–Insights into Sequence Redundancy and I-Motif Stability
The GC-rich nuclease hypersensitivity element III1 (NHE III1) of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3′ consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+–cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif
Canonical NF-κB promotes lung epithelial cell tumour growth by downregulating the metastasis suppressor CD82 and enhancing epithelial-to-mesenchymal cell transition
Copyright: © 2021 by the authors. Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.Institutional Program Grant for the Development of Research Institutes “Advanced research activities in biomedical and agro-alimentary technologies, ARABAT (BITAD)” (MIS5002469) of the operational program “Competitiveness, Entrepreneurship and Innovation” (NSRF2014-20, EU-ERDF); research grant in Biomedical Sciences from FONDATION SANTÉ; STAVROS NIARCHOS Foundation-FORTH Fellowship for PhD candidates of the program ARCHERS: Advancing young researchers’ human capital in cutting edge technologies in the preservation of cultural heritage and the tackling of societal challenges; Biomedical Research Division, IMBB-FORTH; University of Ioannina Research Committee
Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes
<p>Abstract</p> <p>Background</p> <p>Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the <it>Uncaria </it>tomentosa, <it>Boswellia spp</it>., <it>Lepidium meyenii and L-Leucine </it>on the IL-1β-induced production of nitric oxide (NO), glycosaminoglycan (GAG), matrix metalloproteinases (MMPs), aggrecan (ACAN) and type II collagen (COL2A1) in human OA chondrocytes and OA cartilage explants.</p> <p>Methods</p> <p>Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-<it>Leucine </it>mixture (HLM, 1-10 μg/ml) and then stimulated with IL-1β (5 ng/ml). Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits.</p> <p>Results</p> <p>HLM tested in these <it>in vitro </it>studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p < 0.05). Supporting these gene expression results, IL-1β-induced cartilage matrix breakdown, as evidenced by GAG release from cartilage explants, was also significantly blocked (p < 0.05). Moreover, in the presence of herbal-<it>Leucine </it>mixture (HLM) up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p < 0.05). The inhibitory effects of HLM were mediated by inhibiting the activation of nuclear factor (NF)-kB in human OA chondrocytes in presence of IL-1β.</p> <p>Conclusion</p> <p>Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.</p
Intersection of inflammation and herbal medicine in the treatment of osteoarthritis
Herbal remedies and dietary supplements have become an important area of research and clinical practice in orthopaedics and rheumatology. Understanding the risks and benefits of using herbal medicines in the treatment of arthritis, rheumatic diseases, and musculoskeletal complaints is a key priority of physicians and their patients. This review discusses the latest advances in the use of herbal medicines for treating osteoarthritis (OA) by focusing on the most significant trends and developments. This paper sets the scene by providing a brief introduction to ethnopharmacology, Ayurvedic medicine, and nutrigenomics before discussing the scientific and mechanistic rationale for targeting inflammatory signalling pathways in OA by use of herbal medicines. Special attention is drawn to the conceptual and practical difficulties associated with translating data from in-vitro experiments to in-vivo studies. Issues relating to the low bioavailability of active ingredients in herbal medicines are discussed, as also is the need for large-scale, randomized clinical trial
AID-Targeting and Hypermutation of Non-Immunoglobulin Genes Does Not Correlate with Proximity to Immunoglobulin Genes in Germinal Center B Cells
Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this “collateral damage” model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination
Explorative data analysis of MCL reveals gene expression networks implicated in survival and prognosis supported by explorative CGH analysis
<p>Abstract</p> <p>Background</p> <p>Mantle cell lymphoma (MCL) is an incurable B cell lymphoma and accounts for 6% of all non-Hodgkin's lymphomas. On the genetic level, MCL is characterized by the hallmark translocation t(11;14) that is present in most cases with few exceptions. Both gene expression and comparative genomic hybridization (CGH) data vary considerably between patients with implications for their prognosis.</p> <p>Methods</p> <p>We compare patients over and below the median of survival. Exploratory principal component analysis of gene expression data showed that the second principal component correlates well with patient survival. Explorative analysis of CGH data shows the same correlation.</p> <p>Results</p> <p>On chromosome 7 and 9 specific genes and bands are delineated which improve prognosis prediction independent of the previously described proliferation signature. We identify a compact survival predictor of seven genes for MCL patients. After extensive re-annotation using GEPAT, we established protein networks correlating with prognosis. Well known genes (CDC2, CCND1) and further proliferation markers (WEE1, CDC25, aurora kinases, BUB1, PCNA, E2F1) form a tight interaction network, but also non-proliferative genes (SOCS1, TUBA1B CEBPB) are shown to be associated with prognosis. Furthermore we show that aggressive MCL implicates a gene network shift to higher expressed genes in late cell cycle states and refine the set of non-proliferative genes implicated with bad prognosis in MCL.</p> <p>Conclusion</p> <p>The results from explorative data analysis of gene expression and CGH data are complementary to each other. Including further tests such as Wilcoxon rank test we point both to proliferative and non-proliferative gene networks implicated in inferior prognosis of MCL and identify suitable markers both in gene expression and CGH data.</p
Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer.
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy
- …