113 research outputs found

    Relational symbolic execution of SQL code for unit testing of database programs

    Get PDF
    Symbolic execution is a technique enabling the automatic generation of test inputs that exercise a set of execution paths within a code unit to be tested. If the paths cover a sufficient part of the code under test, the test data offer a representative view of the actual behaviour of this code. This notably enables detecting errors and correcting faults. Relational databases are ubiquitous in software, but symbolic execution of code units that manipulate them remains a non-trivial problem, particularly because of the complex structure of such databases and the complex behaviour of SQL statements. Finding errors in such code units is yet critical, as it can avoid corrupting important data. In this work, we define a symbolic execution translating database manipulation code directly into constraints and integrate it with a more traditional symbolic execution of normal program code. The database tables are represented by relational symbols and the SQL statements by relational constraints over these symbols. An algorithm based on these principles is presented for the symbolic execution of simple Java methods that implement transactional use cases by reading and writing in a relational database, the latter subject to data integrity constraints. The algorithm is integrated in a test generation tool and experimented over sample code. The target language for the constraints produced by the tool is the SMT-Lib standard and the used solver is Microsoft Z3. The results show that the proposed approach enables generating meaningful test data, including valid database content, in reasonable time. In particular, the Z3 solver is shown to be more scalable than the Alloy solver, used in our previous work, for solving relational constraints

    A Direct Symbolic Execution of SQL Code for Testing of Data-Oriented Applications

    No full text
    Symbolic execution is a technique which enables automatically generating test inputs (and outputs) exercising a set of execution paths within a program to be tested. If the paths cover a sufficient part of the code under test, the test data offer a representative view of the program's actual behaviour, which notably enables detecting errors and correcting faults. Relational databases are ubiquitous in software, but symbolic execution of pieces of code that manipulate them remains a non-trivial problem, particularly because of the complex structure of such databases and the complex behaviour of SQL statements. In this work, we define a direct symbolic execution for database manipulation code and integrate it with a more traditional symbolic execution of normal program code. The database tables are represented by relational symbols and the SQL statements by relational constraints over these symbols and the symbols representing the normal variables of the program. An algorithm based on these principles is presented for the symbolic execution of Java methods that implement business use cases by reading and writing in a relational database, the latter subject to data integrity constraints. The algorithm is integrated in a test generation tool and experimented over sample code. The target language for the constraints produced by the tool is the SMT-Lib standard and the used solver is Microsoft Z3. The results show that the proposed approach enables generating meaningful test data, including valid database content, in reasonable time. In particular, the Z3 solver is shown to be more scalable than the Alloy solver, used in our previous work, for solving relational constraints

    Cyclin B1-Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint.

    Get PDF
    How the cell rapidly and completely reorganizes its architecture when it divides is a problem that has fascinated researchers for almost 150 yr. We now know that the core regulatory machinery is highly conserved in eukaryotes, but how these multiple protein kinases, protein phosphatases, and ubiquitin ligases are coordinated in space and time to remodel the cell in a matter of minutes remains a major question. Cyclin B1-Cdk is the primary kinase that drives mitotic remodeling; here we show that it is targeted to the nuclear pore complex (NPC) by binding an acidic face of the kinetochore checkpoint protein, MAD1, where it coordinates NPC disassembly with kinetochore assembly. Localized cyclin B1-Cdk1 is needed for the proper release of MAD1 from the embrace of TPR at the nuclear pore so that it can be recruited to kinetochores before nuclear envelope breakdown to maintain genomic stability

    VST: the telescope progress toward stars

    Get PDF
    The VST telescope is in an advanced stage of integration in Chile, after a period of work spent mainly on the active optics system, started in mid-2007. We present the results of the recent work on the primary and secondary mirror support systems and on the mirror cell auxiliary units

    Perrault Aux Prises Avec la Fontaine: Imitation, Compétition et Correction Dans Les Fables de Faërne (1699)

    Get PDF
    Known especially for his fairy tales, Charles Perrault is also the author of the Fables de Faërne (1699). In this French translation of the Neo-Latin volume Fabulae Centum (1564), written by the Italian humanist Gabriel Faerno, Perrault had to position himself against his renowned predecessor Jean de La Fontaine, who had been dominating fable literature for decades. Perrault could either imitate his famous example, or evade it, due to anxiety of influence. To illustrate this inner struggle, we systematically compare both authors’ fables, concentrating our analysis on versification (metre and rhyme), vocabulary and apostrophe. In our comparison, we constantly verify whether any of the resemblances could be attributable to other French, versified fable books read by both Perrault and La Fontaine. Occasionally, this seems to be the case for the anonymous collection L’Esbatement moral des animaux (1578).Vakpublicati

    Menopausal Status Modifies Breast Cancer Risk Associated with the Myeloperoxidase (MPO) G463A Polymorphism in Caucasian Women: A Meta-Analysis

    Get PDF
    BACKGROUND: Breast cancer susceptibility may be modulated partly through polymorphisms in oxidative enzymes, one of which is myeloperoxidase (MPO). Association of the low transcription activity variant allele A in the G463A polymorphism has been investigated for its association with breast cancer risk, considering the modifying effects of menopausal status and antioxidant intake levels of cases and controls. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a more precise estimate of association using the odds ratio (OR), we performed a meta-analysis of 2,975 cases and 3,427 controls from three published articles of Caucasian populations living in the United States. Heterogeneity among studies was tested and sensitivity analysis was applied. The lower transcriptional activity AA genotype of MPO in the pre-menopausal population showed significantly reduced risk (OR 0.56-0.57, p = 0.03) in contrast to their post-menopausal counterparts which showed non-significant increased risk (OR 1.14; p = 0.34-0.36). High intake of antioxidants (OR 0.67-0.86, p = 0.04-0.05) and carotenoids (OR 0.68-0.86, p = 0.03-0.05) conferred significant protection in the women. Stratified by menopausal status, this effect was observed in pre-menopausal women especially those whose antioxidant intake was high (OR 0.42-0.69, p = 0.04). In post-menopausal women, effect of low intake elicited susceptibility (OR 1.19-1.67, p = 0.07-0.17) to breast cancer. CONCLUSIONS/SIGNIFICANCE: Based on a homogeneous Caucasian population, the MPO G463A polymorphism places post-menopausal women at risk for breast cancer, where this effect is modified by diet

    Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential

    Get PDF
    The reduction or loss of plakoglobin expression in late-stage bladder cancer has been correlated with poor survival where upregulation of this catenin member by histone deacetylase inhibitors has been shown to accompany tumour suppression in an in vivo model. In this study, we directly addressed the question of the role of plakoglobin in bladder tumorigenesis following restoration, or knockdown of expression in bladder carcinoma cell lines. Restoration of plakoglobin expression resulted in a reduction in migration and suppression of tumorigenic potential in vivo. Immunocytochemistry revealed cytoplasmic and membranous localisation of plakoglobin in transfectants with <1% of cells displaying detectable nuclear localisation of plakoglobin. siRNA knockdown experiments targeting plakoglobin, revealed enhanced migration in all cell lines in the presence and absence of E-cadherin expression. In bladder cell lines expressing low levels of plakoglobin and desmoglein-2, elevated levels of desmoglein-2 were detected following restoration of plakoglobin expression in transfected cell lines. Analysis of wnt signalling revealed no activation event associated with plakoglobin expression in the bladder model. These results show that plakoglobin acts as a tumour suppressor gene in bladder carcinoma cells and the silencing of plakoglobin gene expression in late-stage bladder cancer is a primary event in tumour progression

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
    corecore