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Abstract

Symbolic execution is a technique enabling the automatic generation of test inputs that
exercise a set of execution paths within a code unit to be tested. If the paths cover a
sufficient part of the code under test, the test data offer a representative view of the
actual behaviour of this code. This notably enables detecting errors and correcting faults.
Relational databases are ubiquitous in software, but symbolic execution of code units
that manipulate them remains a non-trivial problem, particularly because of the complex
structure of such databases and the complex behaviour of SQL statements. Finding
errors in such code units is yet critical, as it can avoid corrupting important data. In this
work, we define a symbolic execution translating database manipulation code directly
into constraints and integrate it with a more traditional symbolic execution of normal
program code. The database tables are represented by relational symbols and the SQL
statements by relational constraints over these symbols. An algorithm based on these
principles is presented for the symbolic execution of simple Java methods that implement
transactional use cases by reading and writing in a relational database, the latter subject
to data integrity constraints. The algorithm is integrated in a test generation tool and
experimented over sample code. The target language for the constraints produced by the
tool is the SMT-Lib standard and the used solver is Microsoft Z3. The results show that
the proposed approach enables generating meaningful test data, including valid database
content, in reasonable time. In particular, the Z3 solver is shown to be more scalable
than the Alloy solver, used in our previous work, for solving relational constraints.
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1. Introduction

In current software development practice, testing [1, 2] remains the primary approach to
detect errors in software. Testing being a complex and costly activity has motivated much
research on efficient techniques to automate all aspects of the software testing process
[3]. Of particular interest is the automation of test data generation [4] for functional unit
testing, where the idea is to automatically generate a representative set of inputs for
a unitary program fragment under test (typically a function or method). Running the
considered code unit with the generated test data then offers a rather representative view
of its actual behaviour, enabling one to detect errors efficiently. Moreover, once a suitable
set of test data has been generated (and verified), it can be used as reference data for
continued (regression) testing.

While different approaches exist towards the automatic generation of test data,
symbolic execution [5] has been recognised as a state-of-art technique for so-called
white-box structural test data generation [6, 7, 8, 9, 10]. In such an approach, the idea is
to generate test data that in some way cover a sufficiently large part of the control-flow
graph of the code unit under test [4]. In a nutshell, symbolic execution executes the
unit under test over symbolic input values instead of concrete ones [5]. Each time a
control dependency is encountered, it proceeds along one of the possible paths, thereby
generating constraints upon the symbolic input values. These constraints are such that if
the code inputs had concrete values satisfying them, the real execution would proceed
along the selected path. Once a termination point is reached, the constraints collected
along are regrouped in a so-called path-constraint. This path-constraint is then solved,
producing concrete test inputs, making the real execution follow the whole path that has
just been symbolically executed. This test generation process is repeated until test data
have been generated for a sufficiently large and diverse number of paths through the
control-flow graph, according to some coverage criterion [4]. Test data generation based
on symbolic execution is now at the core of various popular open-source and commercial
testing tools, some being used in an industrial context, notably at Microsoft and NASA [9].

Symbolic execution of imperative code has been widely studied [11, 12, 13, 14], as
well as generalised to lower-level or higher-level programming paradigms, such as for x86
assembly [15] or Java [16, 17] and C# [18] object-oriented code. In so-called database
programs, such classical code is mixed with SQL code to interact with a relational
database. Enabling symbolic execution in the presence of SQL statements among the
classical statements is a non-trivial extension of existing symbolic execution techniques.
Such an extension could be beneficial, as enabling an efficient testing of the programs
that manipulate databases would provide a powerful means to prevent data corruption.

From a theoretical standpoint, deciding the satisfiability of an SQL query is not
computationally possible in general [19], so that generating test data for any particular
execution path, in the presence of SQL statements in the path, is not generally computable
either [20].

From a more practical standpoint, the database can be seen as nothing else than a
particular kind of container for some of the input values manipulated by the code unit
under test. During symbolic execution, these values must thus be represented symbolically
and subsequently constrained to enable the proper generation of test data, including a
valid input database content. The symbolic representation of these values raises difficulties
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as the database is a container of particularly complex shape: its content must obey the
so-called database schema, defined using SQL DDL code [21]. This database schema
defines a set of tables where the database content will be stored. Each table can be
seen as a container for a mathematical relation, i.e., a set of tuples with no limit on the
potential number of tuples. The schema typically also describes a set of data integrity
constraints that must be enforced by the relations in the tables, like the primary key,
foreign key or check constraints. These constraints are particularly complex as they are
quantified first-order logic constraints. For instance, a primary key constraint states that
for all couples of tuples in the relation represented by a table, the value of the primary
key fields cannot be all equal.

Moreover, a code unit typically interacts with the database by using SQL [21] query
statements and modification statements that are embedded in the unit’s source code. As
such, SELECT queries enable gathering values from the database tables in order to copy
them into the code unit’s variables. Modification statements INSERT, UPDATE and
DELETE enable modifying the content of the database tables, typically a function of the
value of the code unit’s variables. Deriving adequate path-constraints in presence of such
SQL statements raises practical difficulties as well. Firstly, SQL is a declarative language:
SQL statements express the desired action over the content of the database relations,
but they do not make explicit the (often complex) sequence of operations necessary to
compute this action. In practice, during execution, these SQL statements are sent by the
code unit — using a dedicated API — to the DataBase Management System (DBMS) [21],
an external component responsible for the interpretation and execution of SQL code over
the database. The DBMS keeps an optimised and persistent internal representation of
the database and manages concurrent distant accesses by enabling the database programs
to use transactions [21]. Secondly, the execution of INSERT, UPDATE or DELETE
statements by the DBMS does not only consist in modifying the content of the database,
but also in checking that these modifications do not leave the database in a state where
the integrity constraints defined in the schema are violated. If an integrity constraint
violation is detected, the modification statement’s execution fails and the database remains
unmodified. As a consequence, during symbolic execution each INSERT, UPDATE or
DELETE statement will have to be treated as an if-then-else statement with a particularly
complex condition:

if (Program variables and Database are in a state
where the SQL statement will not violate any constraint) {
Execute the SQL statement!
1 else {
Signal a constraint violation !
}

Two research approaches have been developed so far to handle the presence of SQL
statements within the classical code to be symbolically executed. The first approach
[22, 23] introduces new native variables in the classical code to represent the database
content and replaces the SQL queries and modification statements by native code acting on
these new variables. Classical symbolic execution can then be applied on this normalised
version of the tested code. The second approach [24] considers the result of any executed
query as an independant code input, typed as a relation. The size and cell content of these
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input relations can be subsequently constrained within the path-constraint, composed of
string and integer constraints. Solving this path-constraint enables generating rows to
insert into the database, so that the queries executed by the tested code should return
results driving the execution into the chosen path.

In this work, we propose a different approach, called relational symbolic execution,
which enables a direct translation of both SQL queries and modification statements
into relational constraints. Contrary to the normalisation approach, relational symbolic
execution makes it possible to test the original code directly, without transforming it.
Contrary to the input arrays approach, relational symbolic execution makes it possible to
test code which writes data into the database and which involves queries whose results
are interdependent.

In practice, relational symbolic execution models every table in the database as a
variable from the code unit, typed as a mathematical relation. Each SQL statement
in the code unit can then be modelled as a relational operation over these relational
variables as well as the traditional code unit’s variables. By defining a symbolic execution
over this relational version of the code, we can derive path-constraints over the values of
both the code unit’s relational and traditional inputs. More precisely, the generated-path
constraints will include symbols representing the classical input values of the code unit,
as well as symbols representing the input relations stored in the database tables when
the unit execution starts. Furthermore, each path-constraint is then combined with
additional constraints, which guarantee that the relational variables in the code always
fulfil the integrity constraints defined in the database schema. The result is a complex
constraint system that mixes traditional constraints over the code inputs with relational
constraints over the initial content of the database. Each solution, instantiated to the
combined constraint system, describes test data, including a valid initial state for each
table in the database, such that when the code is executed with respect to these data
values (including the database), the execution will follow the path represented by the
constraint system.

The main contribution of this work is a relational symbolic execution algorithm, which
implements the technique described in the previous paragraph for a precise subset of Java,
empowered by the JDBC API for using SQL primitives and transactions. The algorithm
has been designed in the context of testing transactional software. In such a context,
database programs can typically be divided into a set of rather small and simple methods,
implementing each a precise business use case, like registering a book borrowing or saving
a sale transaction. These use cases involve a short sequence of basic SQL interactions,
touching a limited number of entities in the database. Given the Java/SQL code of a
single Java method implementing such a use case, the SQL DDL code describing the
part of the database schema touched by this method and a finite path in the control flow
graph of the method, the algorithm generates the corresponding constraints.

A major challenge for relational symbolic execution is solving the mix of relational
and classical constraints produced by the approach. In our previous work [25, 26], these
constraints were expressed using the Alloy language [27] and solved using the Alloy
analyser [27]. Recently, it has been proposed [28] to translate Alloy constraints into the
SMT-Lib standard language [29], as some solvers based on this language, like Microsoft Z3
[30], enable detecting the unsatisfiability of the constraints, which is not possible within
the Alloy framework. However, [28] advises to continue using the Alloy analyser for finding
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solutions to satisfiable constraints, as Z3 had exhibited some limitations for this task, due
to the unavoidable presence of quantifiers when translating relational constraints into
SMT-Lib. Nevertheless, more recent versions of Z3 take advantage of new model-based
quantifier instantiation capabilities (MBQI) [31], providing the solver with a promising
ability to find efficiently solutions for satisfiable quantified constraints. In this paper,
the relational symbolic execution algorithm from our previous work has been redesigned
to generate constraints in the SMT-Lib language and solved using an MBQI-powered
version of Z3. Z3 is at the core of several existing state-of-art symbolic execution tools
(e.g. [18, 15]). Moreover, it handles a much larger and more various panel of constraints
than Alloy, the latter being limited to bounded-scope integer and relational constraints.
Using Z3 as a back-end solver does strengthen thus the generalisability of our approach.

A test generation tool based on our new relational symbolic execution algorithm
and the Z3 solver has been coded and used to generate test data for a number of
sample Java methods and databases, including open-source code extracted from the
web. These experiments enabled a comparative evaluation of Alloy and Z3 for solving
the generated constraints. They also made it possible to compare, to some extent, the
performance of our approach with that of related work and to evaluate its scalability limits.

The remainder of this paper is organised as follows. The relational symbolic execution
algorithm is presented in section 2 and 3. Section 2 discusses the transactional context
for which the algorithm was designed and formally defines the part of the Java/SQL
syntax that is supported. Section 3 systematically describes the constraint generation
rules used by the algorithm for the symbolic execution of the supported language. The
test generation tool based on the algorithm is described, together with our experimental
evaluation of the approach, in section 4. Finally, a synthesis of the research contribution
(section 5), as well as a discussion of related work (section 6), threats to validity (section
7) and future work (section 8) are provided.



2. A study framework for unit testing of transactional database programs

2.1. Database programs in a transactional context

Interaction between software and a relational database is often said to occur either in an
OLTP (On-Line Transaction Processing) or in an OLAP (On-Line Analytical Processing)
context. In a nutshell, OLTP corresponds to the case where few simple operations over
some precise data are performed live to support one individual human activity, like saving
a bank transaction or processing a ticket registration. The OLAP context occurs when
large amounts of data are mined from a database to support reporting or processing
activities, like accounting, budget or marketing.

Our approach aims at automating unit testing in the context of OLTP. Database
programs written in an OLTP context can typically be divided into rather small [32] code
units "implementing [business] use cases which execute a sequence of actions whereas
each action usually reads or updates only a small set of tuples in the database” [33]. Such
a kind of a use case is aimed to support one particular human activity. An example
extracted from [33] of such an activity is a library user that wants to borrow a book. The
use case, implemented into a code unit, checks the user and book data and possibly allows
and saves the borrowing.

The purpose of our work is to generate test data for such OLTP code units. In practice,
the targeted code units have simple operations and do not involve complex computations.
They perform at most a few dozen simple SQL operations acting over a group of at most
a dozen of interrelated tables.

2.2. A study language for code units in transactional database programs

2.2.1. General presentation

OLTP code units can be written in many different programming languages, using
different DBMS interfaces, and taking advantage of the numerous features of the various
SQL dialects. Given this diversity, it is necessary to define a framework to properly
study our relational symbolic execution approach. Practically, we have chosen to consider
a formal Java subset with JDBC [34] and ISO SQL [35] primitives, which are all very
popular technologies.

Our language enables to write code implementing an OLTP business use case. Such an
implementation is composed of the DDL schema of the manipulated part of the database
and of the code of the Java method carrying out the use case. The database schema
describes a set of tables composed of integer attributes. Each table has a primary key and
the attributes can be constrained by foreign key constraints and check constraints. The
code of the method can contain if-then-else blocks, while loops and return statements.
It can contain integer and list (local) variable assignments, with typical operators for
lists and linear operators for integers. Assertions can be declared in the code. The
method interacts with the database through SQL base statements whose structure is
entirely described statically, and through SQL base primitives for transaction management.
Statements writing in the database can throw runtime exceptions if the write operation
violates the DDL schema. Such exceptions can be caught. The method
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receives as input parameters a JDBC connection to the database, a set of integer lists and
an input scanner for integers. The lists model any structured group of inputs transmitted
to the code at method call. The scanner models the method’s access to simple data from
the ”outside world”, like user prompt, network access, etc.

Figure 1 provides a sample use case implemented in the language considered here. This
code describes a database with two tables: one for library shelves and one for the books
stored in each of these shelves. The total number of books stored in a shelf is saved for
each shelf. The Java method adds a set of new books to the database and updates the
shelves’ books counts. If a book is added to a non-existent shelf, then the shelf is itself
added to the database as well. The books are inserted one by one in isolated transactions.
If a transaction was successful, the code of the added book is saved in a list, which is
returned at the end of the method’s execution.

As a matter of fact, our study language contains all base SQL primitives as well as
a Turing-complete subset of Java. The symbolic execution of many Java constructs
not considered here has been studied elsewhere (see e.g. [16, 17]) and is a problem
orthogonal to this work, which studies the integration of SQL handling into classic
symbolic execution. Our study language allows integers as the only datatype for the
values stored in the database. Non-linear integer arithmetic operations are not permitted
by the language. The sole consequence of allowing other datatypes, like bit-vectors, reals,
timestamps or strings, as well as of allowing non-linear arithmetics, would be that our
algorithm would produce bit-vector, real, timestamp, string and non-linear arithmetics
constraints, in addition to the linear integer constraints produced here. As an impact,
the underlying constraint solver may become unable to properly handle the produced
constraints. Solving complex constraints in an efficient way is a well-known challenge for
symbolic execution in general [10]. This issue is evaluated for our particular context in
the discussion part of the paper.

In the remaining part of this subsection, we define precisely — using a BNF grammar
— what subset of the Java/SQL syntax our algorithm can execute symbolically. This
description is made with the implicit requirement that the written code is well-typed
according the relevant standard Java and SQL typing rules.

The chosen notation for the BNF is standard but includes some additional meta-symbols:
{...} (grouping), * (zero or one times), * (zero or more times) and * (one or more times).
When a single nonterminal appears several times in a single production, subscript notation
enables distinguishing between the occurrences.

2.2.2. OLTP use case implementation

An OLTP use case implementation is composed of the SQL DDL code of the touched
part of the database (the tables containing the data actually manipulated in the use case
and all the tables directly or indirectly linked to these tables by foreign key constraints,
the other tables can be left empty or filled randomly during the testing process) and of
the code of the Java method carrying out the use case.

(oltp-use-case-implementation) ::= (sql-ddl) {(Java-method)

2.2.3. Database schema
The relational database schema is a list of table definitions. This list can be empty, in

which case the method is a classical method that works independently of any database.
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In the list, each table is identified by its name, contains at least one attribute and
endorses exactly one primary key. Foreign keys and additional check constraints can be
declared for a table. A row in a table cannot be deleted or see its primary key value
modified as long as there exists at least another row in the database that references it (ON
DELETE/UPDATE NO ACTION). The semantics of all the schema creation primitives
conforms to the standard [35] SQL DDL.

(sql-ddly ::= (table)*

(table) ::= CREATE TABLE (id) ((att)* (p-key) (f-key)* (chk)*);

(att) ::= (id) INTEGER NOT NULL ,

(p-key) ::= CONSTRAINT (id).,, PRIMARY KEY ( (id)u, )

(f-key) ::= ,CONSTRAINT (id).; FOREIGN KEY ( (id)s; ) REFERENCES (id)p ( (id)refia )
(chk) == ,CHECK ((id) {< | =| >} (integer))

Gdy s={al.lz|Al.|ZHal|..|z|A|..]Z]|0].]9}*

(integery == > {1 | ... | 9}{0 | ... | 9}* | 0}

2.2.4. Method signature and body

We consider Java methods manipulating only local variables and parameters.
Variables can only be typed as ‘int’, ‘Java.util.List<Java.lang.Integer>’ or
‘Java.sql.ResultSet’. The method receives as input parameters a connection to the
database (typed as ‘Java.sql.Connection’), a scanner (typed as ‘Java.util.Scanner’)
and some lists of integers (typed as ‘Java.util.List<Java.lang.Integer>’), where two
distinct list parameters cannot reference a single list object. Its return type can be either
‘void’, ‘int’ or ‘Java.util.List<Java.lang.Integer>’.

(Java-method) ::= (type) (id) ({(db-con),{inp) (parameters)) throws SQLException
{ (stmt)* }
(type) ::= void
| int
| List<Integer>
(db-con) ::= Connection con
(inp) ::= Scanner in

(parameters) := {, List<Integer> (id) }*

The connection with the database is assumed reliable and every SQL statement, being
well formed, is processed for its effect on the database. The semantics of all the Java
constructs conforms to the classical Java specification and documentation. The semantics
of all SQL statements conforms to the standard [35] SQL specification.

2.2.5. Common statements and list management

Common condition, loop, assertion and assignment statements, as well as com-
mon integer expressions and boolean conditions can be used. Lists can be ma-
nipulated with ‘add(int)’, ‘remove(int)’, ‘get(int)’ and ‘size()’ methods. The
‘Java.util.ArrayList’ implementation of these methods is assumed to be used. A
list variable can be ‘null’.



(stmt) := if ((cond)) {(stmt)me*} {else {(stmt) ™ }}";
| while ({cond)) { (stmt)* };
assert (cond) ;
{int | List<Integer>}’ (id) = (expr);
(id).add ( (int-expr) );
(id) .remove ( (int-expr) ) ;
return (id);

false

(! {cond))

condy, {& | |} {cond),)
(int-expr); {< | == | >} (int-expr),)

\
\
\
\
\
{cond) ::= true
\
\
\
\
|  ((id) == null)
(expr) ::= (int-expr) | {list-expr)
(int-expr) = (id)
| (integer)
| int-expr), {+ | -} (int-expr),)
|  (id).get ( (int-expr) ) .intValue())
| ((id).size())
(list-expr) ::= (id)
| null
| new ArrayList<Integer>()

2.2.6. Interacting with the outside world

The scanner parameter of the method can be used to get integer data from the "outside
world” (user prompt, network access, reading from a file, etc.). This interaction is assumed
to always succeed, without any technical problem. We have thus the following new
alternative for the (stmt) non-terminal:

(stmt)y == {int}’ (id) = in.nextInt();

2.2.7. Reading data from the database

Data can be read from the database using simple SQL queries. The obtained ResultSet
can be accessed using the ‘next ()’ and ‘getInt(String)’ methods. We have thus the
following alternatives for existing non-terminals:

(stmt) := { ResultSet }’ (id) = con.createStatement () .executeQuery (" (select-query) ") ;
| (id).next();

(int-expr) = (id)p.getInt (" (id)a ")
(cond) ::= ((id).next ( {(int-expr) ))

as well as the following new non-terminals:

(select-query) ::= SELECT {(id);, } *(id), FROM (id),; { WHERE (db-cond) }’

(db-cond) ::= ({db-cond), {AND | OR} (db-cond),)
| (NOT (db-cond))
| id) {<| =] >} (db-int-expr))

10



(db-int-expr) ::= (id)

| (integer)

| ((db-int-expry, {+ | -} {(db-int-expr),)

| "+( (int-expr) )+"

Integer expressions appearing in SQL code ((db-int-ezpr)) can be parameterised by
integer constants computed dynamically by the Java method. For example, in:

void example (Connection con, Scanner in) throws SQLException {

int n = 0;

ResultSet r= con.createStatement().executeQuery("SELECT id FROM table WHERE id="+(n)+"");
r.next ();

int p = r.getInt(”id”);

}

The character string that will be effectively sent to and processed by the DBMS is:
SELECT id FROM table WHERE id=0

The parametric constants can depend on the method’s inputs, like in:

void example (Connection con, Scanner in) throws SQLException {
int n = in.nextInt ();
ResultSet r= con.createStatement().executeQuery ("SELECT id FROM table WHERE id="+(n)+""); }

2.2.8. Writing data into the database

Data can be written into the database using simple SQL INSERT, UPDATE or
DELETE statements. If the execution of such a statement provokes a violation of one
of the database schema integrity constraints, the database remains unmodified by the
statement, an exception is thrown within the method and its execution is stopped. Such
exceptions should be caught using a try/catch structure.

(stmt) ::= con.createStatement () .execute (" (db-write) ") ;
| try { con.createStatement().execute(" (db-write) "); }
catch (SQLException e)
{ (stmt)* };
(db-write) ::= INSERT INTO (id) VALUES ( { (int-ezpr);, }* (int-expr), )
| UPDATE (id). SET (id)s, = (db-int-expr) { WHERE (db-cond) }’
| DELETE FROM (id) { WHERE (db-cond) }’

2.2.9. Transaction management

SQL transactions are managed through the classical commit and rollback statements.
We suppose that a new transaction is automatically started at the beginning of the
method’s execution. The first call to commit or rollback will end this transaction and then
starts a new one. Any subsequent call to commit or rollback will end the current transaction
and start a new one. When a commit statement is executed, it makes permanent all the
changes made to the database by the method since the current transaction was started.
When a rollback statement is executed, it restores the database to its state at the start
of the current transaction. We suppose that all the changes made to the database since
the last transaction was started are automatically committed at the end of the method’s
execution.

(stmt) ::= con.commit() ;
| con.rollback() ;
11



3. A symbolic execution for unit testing of transactional database programs

In the forthcoming section, we present our relational symbolic execution algorithm,
able to generate adequate path-constraints, coupled with the necessary database schema
integrity constraints, for any OLTP use case implementation, written in the language
defined in the previous section.

3.1. Symbolic execution and path exploration

Originally introduced in [5], symbolic execution has been used as the core principle of
many test data generation techniques. In some of these techniques (see e.g. [36] for an
overview), symbolic execution is performed for a set of paths in the control-flow graph,
according to some coverage criterion [4], by inspecting statically the tested code, i.e.
independent of any concrete input values. More recently, test data generation techniques
that combine symbolic execution with a dynamic path exploration process have also
been proposed (see e.g. [11, 37, 38]). The code is first executed on concrete inputs to
produce concrete outputs, but it is instrumented so that symbolic execution is performed
in parallel, thereby generating the path-constraint corresponding to the concrete execution.
By flipping the value of some of the logical formulas in this path-constraint, one can
produce another path-constraint, whose solution describes new concrete inputs triggering
the execution of a different path. The process is then repeated with these new inputs
until a set of inputs and outputs has been generated for a set of paths covering a sufficient
part of the code, according to some coverage criterion [4]. The point of using such
a dynamic path exploration process is to provide seamlessly symbolic execution with
concrete values. These values can then be used as a last resort to replace the statements
for which constraints cannot be generated (like proprietary API calls) or handled by the
solver (as they belong to a complex, exotic and/or undecidable logic). This process is
called concretisation and is deeply discussed and evaluated in [39].

The relational symbolic execution algorithm described in this section receives as inputs
the SQL DDL code of the database, the Java code of the method under test and an
execution path through this method. It produces as output a constraint system mixing
classical constraints with relational constraints. Solutions to this system are such that
when the method is executed with respect to any of these solutions, its execution will
follow the given path. Coupling this algorithm with any existing approach, either static or
dynamic, to explore a set of paths to test in the method’s control flow graph will enable
generating test data for these paths. The set of paths for which test data are computed,
as well as the process used to explore these paths, are thus parameters of the approach
that we propose. This also enables the approach to be used within the context of different
code coverage criteria [4].

3.2. Algorithm inputs and outputs

The inputs of our algorithm are an OLTP use case implementation, written in the
language defined in the previous section, as well as an execution path through the Java
method defined in this implementation. This execution path is supposed to be a finite
path in the method’s control flow graph [4]. It defines which branches were taken at each
of the encountered if statements, how many times the body of each encountered loop was
executed (this number must be finite), which assertions were eventually violated and, for
each encountered try/catch statement, whether the catch clause was executed.
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Our algorithm translates the path into a constraint system, combining the path-
constraint with the database schema integrity constraints, expressed in SMT-Lib v2 [29],
a widely adopted language used as the standard language for many SMT solvers. The
generated constraints fit into the SMT-Lib AUFLIA logic, i.e. they can involve quantified
array, uninterpreted functions and linear integer arithmetic constraints.

Solving the constraint system generated by the algorithm for a complete path enables
finding values for the inputs (and, as we will see, also for the outputs) of the analysed Java
method. The inputs include the content of each database table at the start of the method’s
execution, the value of every list received as argument by the method, and a value for the
part of the input stream that is consumed during the method’s execution. The outputs
include the content of each database table at the end of the method’s execution, the final
value of each of the argument lists of the method, and possibly the value returned by the
return statement. If the constraint system produced for a given path has no solution, this
means that the path is infeasible. As the produced constraints are written in a quantified
logic that is not generally decidable [28], it can happen that for a given path the solver
may neither be able to find a solution for the generated constraint system, nor be able to
establish that such a solution does not exist. This is coherent with the problem being not
computable in general.

3.8. Algorithm principle

The algorithm performs a symbolic execution of the path received as input. First, it
creates symbols to represent each of the inputs of the Java method and the initial content
of each of the database tables. It generates also constraints over the symbols representing
the initial values of the database tables. These constraints state that, initially, each table
contains data that conform to the database schema integrity constraints.

Secondly, the algorithm analyses one by one the method’s statements in the order
specified by the path. Each time a statement sets or changes the value of a method
variable or database table, the algorithm creates a symbol representing the newly defined
value and generates constraints linking this new symbol to the symbols created previously.
These constraints describe how the new value can be computed from the values of the
database tables and method variables before the statement’s execution. Moreover, every
time the value of a database table is changed, constraints are also added to state that the
new value satisfies the database schema integrity constraints. Finally, every time an if,
while, assert or try/catch statement is encountered, the algorithm generates an additional
constraint over the symbols such that when the method is executed with respect to values
satisfying this constraint, the execution is guaranteed to take the considered path.

3.4. Ezecution example

In the following paragraphs, we illustrate the execution of the algorithm over the sample
code given in Figure 1 (page 7). We detail each step of the symbolic execution process
over the path where the while loop is executed once, the else branch of both if statements
is taken, and the catch clause of the try/catch is executed (lines 1-6, 8-15, 18-21, 3, 22).

At each step, we present the rules used by our algorithm to generate the corresponding
SMT-Lib symbols and constraints. It should be noted that SMT-Lib syntax is inspired
by the S-expressions from Lisp, where classical expressions like 2 + 2 + 2 are written
as (+ 2 (+ 2 2)). All the rules that are part of the complete set of rules defining our
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symbolic execution algorithm for the subset of Java/SQL defined in the previous section
are presented during one of these steps, and/or described formally in a set of tables
available at the end of this section.

The first step executed by our algorithm is to generate SMT-Lib symbols and constraints
for the SQL DDL code of the database schema. For the database schema described in
Figure 1, the generated SMT-Lib code is detailed in the frame below. For the reader’s
convenience, the corresponding Java/SQL code will be reminded as a preliminary comment
in the SMT-Lib code.

First of all, the algorithm generates new symbol types for the kind of objects stored in
each table defined by the schema (the lines prefixed by (0) in the SMT-Lib code below).
It will then generate symbols and constraints describing the input content of each of
these tables. The used modelling is inspired by the one proposed in [28] for relational
types. First, a symbol is created (1) to represent the initial set of objects in each table.
Typed as a boolean function, it returns true for each object present in the input content
of the table. Symbols typed as integer functions are then generated (2) to associate to
each object in the table one of its attribute values. Finally, constraints are generated to
enforce on this input content all the check constraints (3), primary key constraints (4),
and foreign key constraints (5) defined in the schema.

Note that the original SQL table and attribute names, as well as the original Java
variable names, are used as SMT-Lib symbols, suffixed by the natural number 1 (e.g.
bookl or idl in the SMT-Lib code below), which represents the fact that the current
symbols represent the initial values of the represented tables, attributes or variables.
Subsequent values of a same table, attribute or variable will be represented by the same
symbol suffixed with successive numbers. Moreover, as detecting corner cases linked to
arithmetic overflow is not a priority of our work, we have used SMT-Lib symbols typed
as mathematical integers to represent the fixed-width integers used the code.

; CREATE TABLE book (

; code INTEGER NOT NULL,

; shelfld INTEGER NOT NULL,

; CONSTRAINT bPK PRIMARY KEY (code),

; CONSTRAINT bFK FOREIGN KEY (shelfld) REFERENCES shelf (id));

; CREATE TABLE shelf (

; id INTEGER NOT NULL,

; numberOfBooks INTEGER NOT NULL,

; CONSTRAINT sPK PRIMARY KEY (id),
; CHECK (numberOfBooks > 0));

; New types for tables
(0) (declare—sort book)
(0) (declare—sort shelf)
; Input content of table Book
(1) (declare—fun bookl (book) Bool)
(2) (declare—fun shelfld1 (book) Int)
(2) (declare—fun codel (book) Int)
(4) (assert (forall ((a book) (b book))
(=> (and (and (bookl a) (bookl b)) (= (codel a) (codel b))) (= a b))))
14




; Input content of table Shelf
(1) (declare—fun shelfl (shelf) Bool)
(2) (declare—fun numberOfBooksl (shelf) Int)
(2) (declare—fun id1 (shelf) Int)
(3) (assert (forall ((a shelf)) (> (numberOfBooksl a) 0)))
(4) (assert (forall ((a shelf) (b shelf))
(=> (and (and (shelfl a) (shelfl b)) (= (id1 a) (id1 b))) (= a b))))

; Foreign keys
(5) (assert (forall ((a book))
(=> (bookl a) (exists ((b shelf)) (and (shelfl b) (= (shelfldl a) (id1 b)))))))

The second step executed by our algorithm is to define a new SMT-Lib symbol type
(called BoundedList) for lists of integers. All the symbols that will be subsequently
generated to represent the value of a variable typed as a Java list will be part of this new
SMT-Lib type. A BoundedList symbol represents a record composed of three fields: the
isNull field is typed as boolean, the size field is typed as integer and the elements field is
typed as array of integers. If the isNull field is true, then the symbol represents the Java
null value. Otherwise, the field size represents the size of the list, and the field elements
represents an array whose indexes 0 to (size — 1) contain the elements of the list in the
right order.

(declare—datatypes ()
((BoundedList (mk—bounded-list (isNull Bool) (size Int) (elements (Array Int Int))))))

It should be noted that the BoundedList symbol type is defined using an algebraic
datatype declaration, where "mk-bounded-list” will be the ad-hoc constructor for list
objects. If datatype declarations are handled by several SMT solvers, the related syntax
has not been standardised in SMT-Lib. In this work, we use the datatype notation
available in the Microsoft Z3 SMT solver [30].

The third step executed by our algorithm is to define symbols (typed as BoundedList)
for the initial content of each list parameter of the method. For the example method
considered in this section, the following code is generated:

; INPUT PARAMETER: List<Integer> newBooks
(declare—const newbooksl BoundedList)
(assert (=> (not (isNull newbooksl)) (>= (size newbooksl) 0)))

It should be noted that the second constraint enforces a general property of BoundedList
objects, described earlier. However, it will be enforced one by one for each BoundedList
object. This is an optimisation compared to using a more general constraint, quantified
over the set of all possible BoundedList objects. In order to solve such a constraint, the
solver would indeed be required to instantiate correctly the quantifier by itself, making
the constraint more costly to solve.

The algorithm can then proceed with the symbolic execution of the method. It follows
the path received as input and considers all the statements one by one. In the case of our
example, the two first statements to be executed are assignments. Symbolic execution for
assignment creates a new symbol of the correct type to represent the new value of the
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assigned variable (1) and generates constraints to specify that this new symbol contains
the value computed by evaluating the expression on the right of the ‘=’ symbol (2). In
the particular case where a list variable is assigned to a different list variable, the shared
content of the two variables is represented by a single symbol.

; int i = 0;
(1) (declare—const il Int)
(2) (assert (=il 0))

; List<Integer> addedBooks = new ArrayList<Integer>();
(1) (declare—const addedbooksl BoundedList)

(2) (assert (not (isNull addedbooksl)))

(2) (assert (= (size addedbooksl) 0))

The next statement in the path is a while statement. As the path specifies that the
loop body must be executed, a constraint is generated to specify that the loop condition
at this point of time should be true:

; ENTERING LOOP: while ( !(newBooks == null) & (i < newBooks.size()) )
(assert (and (not (isNull newbooksl)) (< il (size newbooksl))))

Then the algorithm proceeds with symbolic execution of the statements in the loop
body, as specified within the input path. The first statement is an assignment statement:

; int error = 0;
(declare—const errorl Int)
(assert (= errorl 0))

Symbolic execution for use of the input scanner simply creates a new symbol to represent
the scanned value:

; int theShelf = in.nextInt();
(declare—const theshelfl Int)

Symbolic execution for select statements creates new symbols to represent the content
of the ResultSet variable. A first symbol (1) describes the number of rows returned by the
select query. These rows are available through a second symbol (2) which is a function
receiving a row index as input and returning the corresponding row as output, in the order
in which they are returned by the ResultSet: (shelveslList 0) will be the first returned
row, (shelves1List 1) the second one and so on.

; ResultSet shelves
(1) (declare—const shelveslSize Int)
(2) (declare—fun shelves1List (Int) shelf)

Constraints are then generated to specify that a row is part of the ResultSet if and only
if it is part of the current content of the table on which the select query is executed and
that it enforces the WHERE condition of the select query. In order to do so, the modelling
proposed in [28] for constraining the content and cardinality of relations, in a way so that
the constraints can be effectively solved by Z3, is used. Following [28], new constraints
are added (1) to define a function shelveslInvertedList which is the inverse of shelves1List.
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This function is used (1) to ensure that shelveslList defines a one to one correspondence
between the integers 0 < i < shelves1Size and the elements in the ResultSet. Helper code
(2) is added to ensure an efficient pattern-based quantifier instantiation [40] by the solver,
using the :pattern keyword [41].

;= con.createStatement().executeQuery("SELECT id FROM shelf WHERE id="+theShelf);
(1) (declare—fun shelveslInvertedList (shelf) Int)
(2) (declare—fun shelveslTrigger (Int) Bool)
(1) (assert (and (>= shelveslSize 0)
(=> (= shelves1Size 0)
(forall ((c shelf)) (not (and (shelfl ¢) (= (idl c) theshelfl )))))))
(1) (assert (forall ((c shelf))
(=> (and (shelfl c) (= (id1 c) theshelfl))
(and (>= (shelveslInvertedList c) 0) (< (shelveslInvertedList c¢) shelveslSize )))))
(1) (assert (forall ((c shelf))
(=> (and (shelfl c) (= (id1 c) theshelfl))
(= c (shelveslList (shelveslInvertedList c))))))
(1) (assert (forall ((i Int))
(=> (and (>=10) (< i shelveslSize))
(=1 (shelvesllnvertedList (shelveslList i))))))
(1) (assert (forall ((i Int))
(! (=> (and (>=10) (< i shelveslSize))
(and (shelfl (shelveslList 1)) (=
(2) :pattern (shelveslTrigger i))))
(2) (assert (=> (>= 0 shelveslSize) (shelveslTrigger 1)))
(2) (assert (forall ((i Int))
(! (=> (and (>=10) (< i shelveslSize))
(shelveslTrigger (+1 1)))
:pattern (shelvesl1Trigger i))))

(id1 (shelveslList i)) theshelfl)))

As the path specifies that the else branch of the if statement must be executed this
time, a constraint is generated to specify that the condition of the if should be false, i.e.
that shelves.next () should return true.

For each ResultSet object, the algorithm records the number of times the next ()
method has been called on this object. This value represents the index increased by one
of the row pointed by the cursor of the ResultSet at the current execution state of the
path. When the boolean value returned by the ‘next ()’ method is used in an if or while
condition, this value states if the number of rows in the ResultSet is greater or equal to
the number of times the ‘next ()’ method has been called so far on this ResultSet. In
this case, shelves.next () will return true if the ResultSet shelves contains at least one
row (as shelves.next () has been called once on the ResultSet):

; TAKING ELSE BRANCH OF: if (! shelves.next() )
(assert (>= shelveslSize 1))

Symbolic execution for update creates a new symbol (1) typed as an integer function,
that will replace the previous symbol associating the attribute value to each object in
the table. As this new symbol is the second one to represent the value of the attribute
numberO fBooks, it is named numberOfBooks2. A couple of constraints (2)(3) is then
generated to relate the old and new attribute values in the table: one for the rows that do
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not match the WHERE condition (2), and one for those that do (3). Finally, constraints
are added to specify that no integrity constraint was violated during the update. In this
case, a constraint (4) is added to state that the updated attribute values still enforce the
check constraint defined in the database schema.

; con.createStatement().execute(
; "UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id ="+theShelf);
(1) (declare—fun numberOfBooks2 (shelf) Int)
(2) (assert (forall ((p shelf))
(=> (or (and (shelfl p) (not (= (id1 p) theshelfl))) (not (shelfl p)))
(= (numberOfBooks2 p) (numberOfBooks1 p)))))
(3) (assert (forall ((p shelf))
(=> (and (shelfl p) (= (id1 p) theshelfl))
(= (numberOfBooks2 p) (+ (numberOfBooksl p) 1)))))
(4) (assert (forall ((a shelf)) (> (numberOfBooks2 a) 0)))

Subsequently, as the path specifies that the catch block of the try/catch statement
must be executed, a constraint (1) is added to ensure that the method variables and
the database are in a state where the INSERT execution will violate a schema integrity
constraint. In this case, the constraint states that the inserted row has a similar primary
key as the primary key of an existing row in the table or that the inserted row has a
foreign key value that does not reference any existing row in the shelf table. Constraints
are also automatically added to ensure that the ‘get (int)’ (2) method does not cause
any runtime error.

; TAKING THE CATCH BRANCH OF:
; try { con.createStatement().execute(
; 7INSERT INTO book VALUES ("+newBooks.get(i)+”,”+theShelf+")”);
; } catch (SQLException e) {
(1) (assert (or (exists ((a book)) (and (bookl a)
(= (codel a) (select (elements newbooksl) i1))))
(forall ((a shelf)) (=> (shelfl a)
(not (= (id1 a) theshelfl ))))))
(2) (assert (not (isNull newbooksl)))
(2) (assert (>=1il 0))
(2) (assert (< il (size newbooksl)))

The content of the catch block is then symbolically executed:

; error = 1;
(declare—const error2 Int)
(assert (= error2 1))

As the path specifies that the else branch of the if statement must be executed this
time, a constraint is generated to specify that the condition of the if should be false:

; TAKING ELSE BRANCH OF: if (error==0)
(assert (not (= error2 0)))

Symbolic execution for Rollback statements tells the algorithm to represent the current
content of each database table using the symbols that were representing the content of
the table just before the last start of a new transaction (saved by the algorithm at the
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beginning of the method execution and after each call to commit or abort). In this case,
the database state is restored to its state at the method start, i.e. the algorithm rewinds
the counters for the database symbols and symbols bookl, codel, shelfIdl, shelf1, idl
and numberO fBooks1 represent the content of the database after the ‘con.rollback()’
statement.

The assignment statement is then symbolically executed:

Si=id 1
(declare—const i2 Int)
(assert (= i2 (4 i1 1)))

As the path specifies that the loop body must not be executed any more, a constraint
is generated to specify that, at this point in time, the loop condition should be false:

; ESCAPING LOOP: while ( !(newBooks == null) & (i < newBooks.size()) )
(assert (not (and (not (isNull newbooksl)) (< i2 (size newbooksl)))))

As a return statement is met, the symbolic execution can be stopped and the generated
SMT-Lib constraint model can be returned. The Z3 solver can now be asked to find a
valuation for the defined symbols satisfying the constraints. As the algorithm records
what symbols represent the initial, respectively final, values of a variable or table, the
input and output values of the method (for the considered path) can easily be extracted
from the solution to the constraint system.

For our example, the set of 29 constraints was solved by Z3 in 24ms (1.8 GHz Intel Core
i5, 8GB Ram) and the test data that were obtained from the solution to the constraint
system are summarised in the following tables:

Inputs Outputs

Name Symbol(s) Value Name Symbolic(s) Value

TABLE CONTENT: TABLE CONTENT:

shelf shelf1, id | n.Books shelf shelf1, id | n.Books
ATTRIBUTES: 6 1 ATTRIBUTES: 6 1
idl 12 1 id1 12 1
numberO f Books1 numberO f Books1

TABLE CONTENT: TABLE CONTENT:

book bookl code | s.Id book bookl code | s.Id
ATTRIBUTES: 4 12 ATTRIBUTES: 4 12
codel codel
shelfld1 shelfld1

newBooks newbooksl1 [4] newBooks newbooksl1 [4]

in.nextInt() | theshelf1 [6] addedBooks| addedbooksl i

3.5. Constraint Generation Rules

For sake of completeness, the following tables define the constraint generation rules
used by our algorithm in case of an Insert (table 2), Update (table 3), Delete (table 4)
and Add/Remove (table 5) statement. Table 1 explains the abbreviations to be used in
the other tables.

In each of these tables, any declaration of a new symbol leverages a generator providing
a fresh symbol identifier, i.e. which has still not been used in the SMT-Lib code generated
so far. This is denoted by (for a function declaration):
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(declare—fun freshSym Type)

and by (for a constant declaration):

(declare—const freshSym Type)

All the subsequent references to freshSym in the table represent this newly declared
symbol. The generated fresh symbols are named according to the naming rule detailed
along the example given in the previous subsection.

Finally, it should be noted that assertions are handled as if statements. For example :

assert x == 0;

is handled as:

if (I(x ==0))
End of computation with AssertionError

Assertions are particularly useful for symbolic execution as they let the programmer
express additional constraints otherwise non-obvious to the solver.
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Table 1: SMT-Lib Translation Abbreviations List

Abbreviation

Meaning

smt20 f(x)

Java condition/expression x translated into a corresponding SMT-Lib
condition/expression.

smt20 f(x,t,r)

SQL condition/expression x evaluated for row r in table t translated
into a corresponding SMT-Lib condition/expression.

name(x) if (x refers to a database table name) then
The symbol that represents the current content of table x
else if (x refers to a database attribute name)
The symbol that represents the current values of attribute x
else if (x refers to a Java variable name)
The symbol that represents the current content of the Java variable x

att; Name of the i, attribute in the list of attributes of table {id)

pk Name of the primary key attribute of table (id).

pk?os Position of primary key in the list of attributes of table (id)

fkl’.“b Name of the table referenced by the i, foreign key in the list of foreign
keys of table (id)

fk?” 4 Name of the primary key attribute of the table referenced by the iy
foreign key in the list of foreign keys of table (id)

ki Position of the foreign key attribute, declared by the iy foreign key in
the list of table (id), in the list of attributes of table (id)

ifkﬁ“b Name of the table where is declared the i, foreign key referencing table
{id) in the whole schema

ifke Name of the foreign key attribute declared by the i, foreign key
referencing table (id) in the schema

col” Position of the attribute constrained by the iy, check constraint declared
in table (id)

co &M Inverted right part of the iy, check constraint declared in table (id) (i.e.

inverted right part of 7a > 0” is "< 07)
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Table 2: SMT-Lib constraints generation rules for INSERT statements

INSERT INTO (id) VALUES ({int-expr) , ... , {int-expr); , ... , {int-expr),)

if (no exception thrown in path for this INSERT) {

; Inserted primary key value does not already exist
(assert(forall((a(id)))(=>(name((id)) a)(not(= (name(pk) a) smt20f((mt—ea:pr)pkpm))))))
; Inserted values constrained by the i foreign key reference emwisting rows
(assert(exists((a fk*’))(and(= (name(fk") a) smt20f((z'nt—eo:pr)fklpvx)) (name(fk'®) a))))

; Symbol for new table content

(declare—fun freshSym ((id)) Bool)

; Constraints describing new table content

(assert (forall ((a (id))) (=> (name((id)) a) (freshSym a))))

(assert (exists ((a (id))) (and (= (att; a) sm20f((int-expr);)) (freshSym a))))

(assert (forall ((a (id)))

(=>(and(not (name((id)) a))(not (= (att; a) sm20f((int-expr);))))(not (freshSym a)))))
; No duplicate inserted row

(assert (forall ((a (id)) (b (id)))

(=>(and(and (freshSym a) (freshSym b)) (= (pk a) (pk b))) (= a b))))

} else {
// Logical disjunction between every possible constraint
// wiolation given the database schema and this insert:

~ —

; The inserted primary key value already exists in the table

(exists ((a (id))) (and (name((id)) a) (= (name(pk) a) sthOf((int—epr)pkpm))))

;" inserted foreign key value does not reference a row:

(forall ((a fki))(=> (name(fk’) a) (not (= (name(fk”) a) smi20 f ((int-exprygrs) ))))
; An inserted attribute wviolates the i™ check constraint : ‘

(not (co*" smr20 f((int-expricos)))

}
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Table 3: SMT-Lib constraints generation for UPDATE statements

UPDATE (id) SET (id).; = {db-int-expr) WHERE (db-cond)

if (no exception thrown in path for this UPDATE) {

; Symbol for new attribute values
(declare—fun freshSym ((id)) Int)
; Constraints describing new attribute values
(assert (forall ((a (id))) (=> (or (and (name((id)) a) (not smr20f({db-cond)id),a)))
(not (name((id)) a))) (= (freshSym a) (name((id),,) a)))))
(assert (forall ((a (id))) (=> (and (name((id)) a) smt20f({db-cond)(id),a))
(= (freshSym a) smr20f((db-int-expr),(id),a)))))
; Update on attribute constrained by i foreign key not leave pending references
(assert (forall ((a (id))) (=> (name((id)) a)
(exists ((b fki”)) (and (name(fki’) b) (= (freshSym a) (name(fk’) b)))))))
; Update on attribute constrained by primary key not leaves duplicate attribute values
(assert (forall ((a (id)) (b (id)))
(=> (and (and(name((id)) a) (name({id)) b)) (= (freshSym a) (freshSym b))) (= a b))))
; Update on primary key referenced by i™ foreign key does not leave pending references
(assert (forall ((a ifki®?)) (=> (name(ifk®) a)
(exists ((b (id)))(and (name({id)) b) (= (name(ifk{") a) (freshSym b)))))))
; Update on attribute constrained by i check constraint does not violate the constraint
(assert (forall ((a (id))) (co/*" (freshSym a))))

} else {
// Logical disjunction between every possible constraint
// violation given the database schema and this update:

; Update on primary key leads to duplicate attribute values
(exists ((a (id)) (b (id))) (and(and (name({id)) a) (and (name({id)) b) (not (= a b))))
(or (and smr20f((db-cond)(id),a) (and smt20f({db-cond)(id),b)
(= smr20f({db-int-expr)(id),a) smi20f({db-int-expr)(id),b))))
(and (not sm20f({db-cond)(id),a)) (and smt20f({db-cond),{id),b)
(= (name((id),,) a) smr20f({db-int-expr),(id),b)))))) )
; Update on primary key referenced by the i foreign key leaves pending references
(exists ((a (id)) (b (id))) (and (and (name({id)) a) (name(ifk’?) b))
(and (and (not (= (name({id),,) a) smt20f({db-int-expr)(id}),a)))
(= (name((id),,) a) (name(ifkfk) b))) smr20f(db-cond)id),a))))
; Update on attribute constrained by i™ foreign key leaves pending references
(exists ((a (id))) (and (and (name((id)) a) smr20f({db-cond),(id),a))
(not (exists ((b name(fk))) (= (name(fk’) b) sm20f((db-int-expr)(id),a))))))
; Update on attribute constrained by i" check constraint violates the constraint
(exists ((a (id))) (and (and (name({(id)) a) smt20f({db-cond)(id),a))
(not (co™" sm20f(db-int-expr) (id),a)))))

23




Table 4: SMT-Lib constraints generation for DELETE statements

DELETE FROM (id) WHERE (db-cond)

if (no exception thrown in path for this DELETE) {

; Symbol for new table content
(declare—fun freshSym ((id)) Bool)
; Constraints describing new table content
(assert (forall ((a (id)))
(= (freshSym a) (and (name({id)) a) (not smr20f({db-cond)id),a))))))
; Delete does not leave pending references for i foreign key
(assert(forall ((a fk') (b (id)))
(=> (and (name({id)) b) (and (not (freshSym b)) (name(ifk!’) a)))
(not (= (name(pk) b) (name(ifk{") a))))))

} else {
// Logical disjunction between every possible constraint
// wiolation given the database schema and this update:

; Delete leaves pending references for i foreign key
(exists ((a k') (b (id)))
(and (and (and (name({id)) b) (name(ifk!’) a) ) smt20f({db-cond),{id),b))
(= (name(pk) b) (name(ifk{") a))))

Table 5: SMT-Lib constraints generation rules for add(int) and remove(int) statements

(id).add ( (int-expr) );

(declare—const freshSym BoundedList)

(assert (not (isNull name((id)))))

(assert (not (isNull freshSym)))

( (size freshSym) (+ (size name((id))) 1)))
( (elements freshSym)

(
E:
(store (elements name((id))) (size name((id))) sm20f({int-expr)))))

(id) .remove ( (int-expr) );

(declare—const freshSym BoundedList)

(assert (not (isNull name({id}))))

(assert (not (isNull freshSym)))

(assert (>= (size name((id))) 1))

(assert (= (size freshSym) (- (size name((id))) 1)))

(assert (>= sm20f((int-expr)) 0))

(assert (< smr20f((int-expr)) (size name({id)))))

(assert (forall ((i Int)) (=> (and (>=10) (< i smR20f((int-expr))))
(= (select (elements name((id))) i) (select (elements freshSym) 1i)))))

(assert (forall ((i Int)) (=> (and (>= i smr20f((int-expr))) (< i (size freshSym)))
(= (select (elements name({id))) (+ i 1)) (select (elements freshSym) i)))))
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4. Experimental evaluation

In the upcoming section, we introduce a test generation tool based on the symbolic exe-
cution algorithm detailed in the previous section. This test generation tool is experimented
over a number of sample OLTP use case implementations. First, these experimentations
enable us to compare the ability of the Alloy and Z3 solver to handle the constraints
produced by relational symbolic execution. Secondly, they enable us to estimate the
practical scalability of relational symbolic execution with current solver technologies.
Finally, they enable us to compare the performance of relational symbolic execution
against an alternate tool, based on normalisation of SQL into native code.

4.1. Test generation tool based on our relational symbolic execution algorithm

In order to evaluate experimentally the effectiveness and efficiency of our relational
symbolic execution approach, we have built a test generation tool that implements it.
This tool integrates our relational symbolic execution algorithm with a control-flow graph
exploration process (based on a static inspection of the tested code) and the Microsoft Z3
solver as a back-end solver.

Our tool was implemented in Java and works as follows. Given some code implementing
an OLTP use case, written in the language detailed in section 2, this code is parsed and
a Java representation of it is built as an abstract syntax tree (AST). The used parser
was generated with the Cup parser generator? and an LALR version of the grammar
defined at section 2. By traversing the generated AST, the tool performs a depth-first
search of the Java method’s control-flow graph, considering all the paths that execute the
body of each loop in the method at most K times, where K is a parameter of the tool.
Consequently, our tool satisfies a finitely applicable variant of the common path-coverage
criterion [4], similar to the loop count-K criterion originally proposed in [42].

In parallel to this exploration of the control-flow graph, the tool applies the relational
symbolic execution algorithm proposed in the previous section. The constraints are
produced but also solved on-the-fly, using the Z3 solver, along the path exploration.
This means that as soon as new constraints are generated by symbolic execution for a
newly traversed statement, the set of constraints generated so far are directly solved.
If these constraints are unsatisfiable, the path prefix explored so far in the graph is
infeasible and the depth-first search process immediately backtracks. This is a common
optimisation in symbolic execution, enabling the early detection of infeasible path prefixes,
so that the path exploration can immediately prune out all the paths starting with such
a prefix. When the constraints corresponding to a feasible path are solved, test input and
output data (including database content) are extracted from the solution and recorded as
constituting one test-case. Once all the paths have been explored, a so-called test-suite
comprising all the generated test-cases is returned to the user. The tool also keeps a
separate list of the paths for which the solver heuristics fail solving the constraints.

During our experiments, the tool was run on a dual core Intel Core i5 processor at
1.8GHz (256 KB L2 cache per core and 3 MB L3 cache) with 8GB of dual channel DDR3
memory at 1600 MHz. The runtime environment was the Oracle JVM 1.6.0_45 under a 32-
bit edition of Microsoft Windows 8.1. The version 4.3.0 of the Microsoft Z3 solver was used.

%http://www2.cs.tum.edu/projects/cup/
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4.2. Sample OLTP use case implementations used for experimental evaluation

The sample code used for our experimental evaluation is composed of eighteen Java
methods, performing SQL operations over relational databases. These methods can be
divided into four groups:

e The first group contains nine methods. Each of them was crafted to systematically
evaluate the correct symbolic execution of one of the different Java and SQL constructs
handled by our algorithm. As such, the methods in this group exercise the different
behaviours of the integer and list operators, conditional and loop statements, SQL
statements and transaction management primitives.

e The second group contains three methods crafted as implementations of OLTP use
cases. The first method in this group performs repeated manipulations of integers and
lists to compare and save some data. The second method performs many interleaved
reads and writes in a database containing four tables, representing regular or prospect
customers that make purchases of products. The third method mixes SQL statements
with traditional Java code and uses SQL transactions. The manipulated database
contains two tables that represent authors writing theatre plays.

e The third and fourth groups contain Java methods extracted respectively from
UnixUsage® and RiskIt*, the two open-source software that have been used in [23],
as a basis for evaluating their proposed test generation tool, called SynDB, based on
SQL normalisation into native code. UnixUsage is a monitoring application for Unix,
manipulating a database with eight tables and thirty one attributes. Risklt is an
insurance application, manipulating a database with thirteen tables and fifty-seven
attributes.

Together, the methods from our testbed constitute a set of five hundred lines of code,
containing notably eighty SQL statements (including SELECT, INSERT, UPDATE,
DELETE statements, as well as transaction management code), over databases containing
up to thirteen tables (subject to primary key, foreign key and check constraints).

Detailed statistics for each of these methods can be found in table 6, including the
value of K used in our tool to limit the loop exploration depth for each method. Given
this value of K, the number of test case to generate (i.e. the number of feasible paths
in the K-bounded control-flow graph) is provided for each method. The methods from
groups 1 and 2 have a small number of feasible paths because they were constructed in
this way on purpose, for assessing the soundness of our test generation tool. The methods
from groups 3 and 4 have a small number of feasible paths because because they have
rather simple control-flow graphs.

Finally, the code of these methods, as well as the generated test data, can be found on
the web?®.

4.3. Ewvaluating the Alloy and Z3 solvers for relational symbolic execution
4.8.1. Performance comparison over common samples

Our first objective with the experiments was to compare the ability of the Alloy and Z3
solvers to solve effectively and efficiently the constraints produced by relational symbolic

Shttp://sourceforge.net/projects/se549unixusage
4https ://riskitinsurance.svn.sourceforge.net
Shttps://staff.info.unamur.be/mmr/scp/
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execution. In order to do so, we used the Alloy version of our tool from [26] and the
SMT-Lib version presented here to generate test cases for the methods of the first and
second groups from our testbed.

The Alloy solver basically solves the constraints by setting upper bounds on the scope
of the possible integers, as well as on the cardinality of the possible different rows which
can appear in the solution for each different table. This makes finite the set of possible
solutions, which can then be exhaustively explored, by transforming the constraints into
an equisatisfiable SAT instance, solved by a dedicated SAT solver. As a consequence, if
no solution is found with the default minimal bound value, the testing tool should repeat
the process recursively with a higher value as bound, until a time-out is reached. When
this time-out occurs, the tool considers the underlying path as infeasible. The time-out
value should thus be long enough to enable finding a proper model for feasible paths.
At the same time, it should not be too long to detect infeasible paths in minimal time.
Finding an optimal time-out value appeared to be very difficult in practice, as it depends
on the size and complexity of the constraints to solve.

In the left part of table 7, we synthesise the results obtained with the Alloy version
of the tool, over the feasible paths of the methods from groups one and two. For each
method, the table provides the minimal bound values enabling Alloy to find inputs for
all the feasible paths in the method. It also provides the total number of constraints
generated for these feasible paths and the minimal time within which the solver was
able to solve these constraints. The methods named "Integers”, "Update”, "Delete” and
”Clients and Products” involve either large integer values or repeated actions on a single
table. As a consequence, the constraints generated for these methods require large enough
bound values to be solved, which had in practice to be found manually, using a costly
trial and error approach. Moreover, the results show that once the bounds are increased,
the size of the SAT instance generated by the Alloy solver quickly explodes, while the
solving time blows up from dozens of milliseconds to several minutes. Finding inputs
for the "Handling Data” and the "Play Catalog” methods, revealed to be intractable in
reasonable time, with the Alloy solver and without any manual help.

In accordance with [28], where Z3 is used as a complement to the Alloy solver for
proving instances unsatisfiable, the Z3 solver was able to detect almost instantaneously
the unsatisfiability of the generated constraints. As a consequence, the SMT-Lib version
of the tool was able to detect properly and efficiently the infeasible path prefixes in the
control-flow graphs of the methods from groups one and two. As we used a more recent
version of Z3 than in [28], involving notably a new model-based quantifier instantiation
(MBQI) technique for solving quantified constraints, we could hope that the solver would
also be able to find efficiently satisfying models for the generated constraints and thus
produce inputs for feasible paths. The obtained results are detailed in the right part
of table 7. The Z3 solver was able to find inputs for each feasible path in milliseconds,
always outperforming the Alloy solver, even when minimal bound values were used in the
Alloy version. As an example, the Alloy version took more than thirty eight minutes and
a half to find test inputs for the four feasible paths of method ”Clients and Products”,
when the Z3 version was able to do it in three seconds and a half. Finding inputs for
the "Handling Data” and the "Play Catalog” methods, which was intractable using Alloy,
became possible in less than two minutes using Z3.

To quantify the impact of using Z3 4.3.0 (with MBQ]), instead of the version 2.16
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(without MBQI) used in [28], we have re-run the experiments with the Z3 version used
in [28]. These new experiments showed that Z3 2.16 can detect infeasible path prefixes
with the same efficiency as Z3 4.3.0, but is not able to find models for the constraints
generated for feasible paths. [28] showed that Z3 2.16 could be used as a complement to
the Alloy solver for proving Alloy instances unsatisfiable. Our work completes this work
by indicating that more recent versions of Z3 could advantageously and totally replace
the Alloy solver both for unsatisfiable and satisfiable constraints.

4.8.2. Practical scalability limits

Our second objective with the experiments was to estimate the practical scalability
limits of current solver technology for the generated constraints. In order to do so, we
have measured the number of generated constraints and the constraint solving time for
relational symbolic execution (using Z3) of the following method, containing a single
execution path, traversing a linear block of SQL statements. These statements involve
SQL SELECT, as well as INSERT, UDPATE and DELETE statements, and the latter
act on fields subject to primary key, foreign key and check constraints.

CREATE TABLE t1 (

idt] INTEGER NOT NULL,

fieldtl INTEGER NOT NULL,
CONSTRAINT t1PK PRIMARY KEY (idt1),
CHECK((idt1 > 0));

CREATE TABLE t2 (

idt2 INTEGER NOT NULL,

fieldt2 INTEGER NOT NULL,
CONSTRAINT t2PK PRIMARY KEY (idt2),
CONSTRAINT t2FK FOREIGN KEY (fieldt2) REFERENCES t1(idt1),
CHECK (idt2 > 0));

void test (Connection con,Scanner in) throws SQLException {
int i =1;

con.createStatement().execute("INSERT INTO t1 VALUES ("+i+”,"+i+7)");
con.createStatement().execute("INSERT INTO t1 VALUES ("+(i+1)+",+(i+1)+")");
con.createStatement().execute("INSERT INTO t2 VALUES ("+i+","+i+7)");
con.createStatement().execute("INSERT INTO t2 VALUES ("+(i+1)+",7+(i+1)+")");

int inputl = in.nextInt ();
ResultSet resultl = con.createStatement().executeQuery("SELECT idt1
FROM t1
WHERE fieldt1="+1);
resultl .next ();
con.createStatement().execute("DELETE FROM t2 WHERE idt2="+inputl);
con.createStatement().execute("UPDATE t2
SET fieldt2 = 1+fieldt2
WHERE idt2 < 74 (2+resultl.getInt("idt17)));
inputl = in.nextInt ();
con.createStatement().execute("DELETE FROM t1 WHERE idt1="+inputl); }

Then, the measurement was repeated for a similar path, but where the block of SQL
statements was executed twice in turn: a first time normally and a second time with a
30




value of i increased by 2. The statements of the second round were executed directly on the
database resulting from the first round so that they can modify the rows it contains as well.
The process was then repeated with four rounds and so on. The obtained measurements
are reported in figure 2 and 3. These graphs show the number of constraints and the
constraint solving time, as a function of the number of SQL statements executed in the
path. The number of constraints evolves linearly with the number of SQL statements.

#SMT Constraints(#5QL Statements)

i
=]
S
=
=
]

20 40 60 80 100
#50QL Statements

Figure 2: Constraint number as a function of the number of SQL statements in the path

Solver Time(#5QL Statements)

Solver Time (s)
w B

1
=3

60
#50QL Statements

Figure 3: Solving time as a function of the number of SQL statements in the path

The constraint solving time increases exponentially with the number of SQL statements.
The solving time starts to rise around 60 statements and becomes important above 100

statements, on our Intel Core i5 at 1.8GHz.
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4.4. Benchmarking relational symbolic execution against normalisation

Our last objective with the experiments was to compare the performance of relational
symbolic execution with the SynDB tool proposed in [23]. In this tool, the tested code
is preprocessed to translate the SQL code into normalised native program code, before
applying a classical symbolic execution process. In order to perform this comparison, we
have selected four simple Java methods from the testbed used by [23] and used our tool
on them. These methods are those of the third group from our testbed.

Our tool generated tests with the same statement coverage as provided by [23]. In order
to propose a fair comparison, the total generation time for each method was measured on
a Pentium 4 configuration (3.06GHz, 1GB RAM, Microsoft Windows XP 32-bit), similar
(but admittedly not identical) to the one used in [23]. The obtained results are synthesised
in the first part of table 8. Results for the normalisation-based tool are extracted from
[23]. While the results are of course not fully conclusive as both tests were run on different
(but comparable) machines, we can nevertheless observe our tool to be between one and
two orders of magnitude faster than [23], generating in each case tests in a few seconds
compared to more than one minute and a half.

A first reason for such a performance difference between both tools is that [23] normalises
the SQL code into native code before trying to generate tests. This requires time and
significantly increases the number of paths to be explored, as each SQL statement is
translated into native code that introduces new branches and cycles in the control-
flow graph. Secondly, [23] is built upon the Microsoft Pex tool for constraint-based
testing, which makes use of a dynamic path exploration, requiring to effectively run the
code for each generated test case. Our research prototype tool makes use of a static
path exploration and does not need to run the code, which also has an impact on our
performance comparison. However, this impact is limited by the fact that the methods
are very small, involving between 7 and 11 simple statements, with only one simple SQL
(SELECT) statement, one loop and no conditional per method. Finally, it should be
noted that our tool handles the string attributes appearing in the methods as integer
ones. This is possible as the tested methods do not use string-specific operators.

4.5. Additional experiments over open-source code

UnixUsage and Risklt provide a useful source of open-source code for evaluating our
testing tool. As a consequence, we have also extracted some methods involving not only
SELECT statements, as in [23], but also SQL statements writing into the database, in
order to assess our tool. These methods are those of the fourth group from out testbed.

Test data generation for these methods required extending our symbolic execution
algorithm to handle some new parts of Java and SQL, used in Risklt, or to simulate
them the currently handled sublanguage. In particular, the management of tables with no
primary key or with multiple-attribute primary key was integrated in the algorithm and
string management operations were simulated using either integers or lists of integers. As
the second part of table 8 shows, correct test data were generated in just a few seconds and,
moreover, manual reviewing of the automatically generated test data enabled detecting a
possible fault in the code of Risklt, where a runtime error is thrown when the method
createNewUser is called on inputs where the inserted job does not reference any existing
occupation or industry.
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5. Synthesis of research contributions

In this work, we proposed an approach for enabling the direct symbolic execution of
SQL code into constraints. This is a non-trivial extension of traditional symbolic execution
because of the complex structure of relational databases and the complex behaviour of
SQL statements. Given a code unit in a database program, mixing traditional code
with SQL statements, each database table manipulated by the unit is modelled as a
variable typed as a relation and each SQL statement as a relational operation over both
these relational variables and the traditional variables of the unit. A classical symbolic
execution process can then be applied to produce path-constraints, mixing relational
and classical constraints over symbols representing the values of both the classical and
relational inputs of the unit. These path-constraints can be unified with the data integrity
constraints from the database schema. Any solution to the resulting constraint system
for a path describes input data for the code unit, including a valid database content, with
respect to which the code can be executed and is guaranteed to follow the same path for
which the constraints were generated.

A symbolic execution algorithm based on this principle has been completely detailed
for a precise subset of Java and SQL. This language enables writing Java methods that
use SQL statements and transactions to read and write in a relational database; the
latter typically subject to data integrity constraints. The algorithm has been designed
with the aim of testing rather small methods, having simple operations and not involving
complex computation, as they are typically written in programs acting in an OLTP
context. Given the schema of the database, the code of the method and an execution path
in this method, the algorithm performs the symbolic execution of the path and produces
the corresponding constraints in the standard SMT-Lib language.

The algorithm has been implemented into a testing tool and used to generate test data
for a number of methods, including some open-source code. The generated constraints
have been solved using the Microsoft Z3 solver. The experiments show that the technique
is able to generate test data for all the considered methods, seamlessly and in reasonable
time. In particular, the results dramatically improve the scope of the approach, compared
to the strategy based on the Alloy solver, proposed in our previous work [25, 26]. These
results provide both an experimental confirmation and new elements to the research
presented in [28], where Z3 was used to prove the unsatisfiability of Alloy constraints.
Our experiments can indeed be seen as some kind of a case study for [28], which confirms
the conclusions of [28] about proving unsatisfiable instances. Moreover, our results show
that versions of Z3 more recent than the one used in [28], including new model-based
quantifier instantiation techniques, can outperform the Alloy solver also in model finding
for satisfiable instances. Finally, our measurements showed that the approach may face
scalability issues outside the context of methods implementing OLTP use cases, if it is
used as such over pieces of code whose typical execution scenarios involve the processing
of a large number of SQL statements.
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6. Related work

6.1. SQL normalisation into native code

An early work that has considered test data generation for programs interacting with
a relational database is [22]. The paper suggests to transform the tested code unit by
inserting new classical variables representing the database structure, and translating all
SQL statements into native code acting on these variables. A translation to C++ is
provided for some relational operators and for some other SQL mechanisms, like row
sorting. Classical white-box testing approaches can then be applied to the normalised
code unit. A conceptually similar but entirely automated technique is proposed in
[23], where the off-the-shelf Microsoft Pex tool, based on symbolic execution and a
dynamic path exploration process, is applied to the normalised version of code units from
database programs written in C#. This latter approach is validated over 39 Java methods
(translated to C# using an automated compiler) extracted from UnixUsage and RiskIt.
These samples involve 32 LOCs per method on average, with a maximum of 108 LOCs,
and each method mixes Java statements with one or a few SELECT SQL statements.

Conceptually, normalising SQL code into native code and then applying classical
symbolic execution on the result is an alternate approach to ours, where the SQL code
is directly compiled into relational constraints during symbolic execution. Replacing a
single SQL statement by a piece of native code, simulating its execution by a DBMS,
is time-consuming and may significantly increase the number of paths to be explored,
compared to the original code [22]. In contrast, in relational symbolic execution, the code
must not be preprocessed and the execution paths to be considered are limited to paths
in the original code. Our experimental benchmarks, comparing the SynDB tool from
[23], based on normalisation, with our tool, tend to indicate that a direct translation
of SQL into constraints provokes a strong performance improvement. Moreover, even if
the symbolic execution of INSERT, UPDATE and DELETE statements is conceptually
possible using normalisation, [23] only validates their approach over code containing
SELECT statements. Relational symbolic execution has on the contrary be experimented
in the presence of SQL code writing into the database, as well as in the presence of SQL
transactions.

On the other hand, the SynDB tool proposed in [23] also provides some important
features that are not handled by ours.

First, SynDB relies on Microsoft Pex, as an off-the-shelf back-end symbolic execution
tool. Pex handles natively a large part of the C# language, where our tool is restricted to
a small part of Java. Moreover, Pex provides some support for character strings, which
constitute an important datatype in SQL, not handled by our tool. Thirdly, Pex uses
a dynamic path exploration process (coupled with heuristics for a smarter covering of
large control-flow graphs), making concrete values for the program variables available if
necessary. This notably gives a direct access to the concrete SQL code that can be, in
some programs, crafted dynamically as a character string, to be parsed and processed by
the DBMS. As a consequence, the tool from [23] can account, at least to some extent, for
such dynamically crafted SQL statements, where our tool only considers SQL statements
whose structure is completely defined statically.

Secondly, SynDB deals with more complex SELECT queries than our tool, involving
cross joins as well as aggregate functions. At the same time, it proposes to handle SQL
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queries involving nested sub-queries by unnesting them into equivalent simple queries. Our
tool could also preprocess the tested code to unnest queries into simpler ones, using the
same translation algorithms as in SynDB. Constraints would then be derived directly from
the unnested queries. The constraint generation rules used in our tool could be generalised
to handle additional SQL constructs like cross joins and aggregate functions, but this has
currently not been implemented. A cross join between tables could be represented by an
SMT-Lib predicate over a record type, gathering together the corresponding joined sorts.
Aggregate functions could be represented by (appropriately constrained) uninterpreted
functions. As a brief and preliminary experimentation of the efficiency of such generalised
rules, we have generated constraints for the following piece of code, acting over the same
library database as in Figure 1:

ResultSet maxCodeShelf = con.createStatement().executeQuery (
"SELECT max(code) AS maxCode
FROM shelf,book
WHERE shelfld = id
GROUP BY shlefld”);
if (maxCodeShelf.next() & maxCodeShelf.getInt("maxCode”) == 1)

The code contains one SELECT query involving a cross join and an aggregate function.
The constraints were appropriately generated for the path taking the then branch of the
if statement and solved in about 10ms by Z3.

6.2. SQL queries as independent input relations

[24] is, to our best knowledge, the very first work to have proposed a convincing
approach, based on symbolic execution, for testing database programs. In that work,
after defining the formal syntax and semantics of a study language for writing code units
in database programs, a test generation algorithm is developed for this language. The
principle is to consider the result of each (simple) SQL SELECT query executed in the
code as an independent input of the tested unit, typed as a relation. The size of each of
these input relations, as well as the content of each of their cells, is transparently accessed
by the code in the unit. As a consequence, the test generation algorithm will produce
path constraints involving constraints over these sizes and contents. The algorithm will
also add additional constraints to the path constraints, enforcing that each row in an
input relation makes the condition of the WHERE clause from its corresponding SELECT
true. The resulting path constraints are solved using a sound but approximate ad-hoc
procedure, involving a solver for strings, which is described in the paper. Following this
approach, the JCUTE symbolic execution tool for Java is provided with the ability to
generate database inputs in the presence of simple SELECT queries in the tested code.
Experimentation is discussed for a 16 lines of code Java method, involving one SQL query
and extracted from open-source software.

The tool detailed in [24] has important features that are not present in our tool. First,
and contrary to our tool, it deals with null values and, at least partly, with character
strings. Secondly, it relies on the JCute symbolic execution tool. JCute handles a large
part of the Java language, including multi-threading, and uses a dynamic path exploration
process. As with Pex, this makes the tool from [24] able to benefit from concretisation as
well as to account, at least to some extent, for dynamically crafted SQL statements.
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However, [24] also suffers from several conceptual limitations compared to relational
symbolic execution. Firstly, the generated path constraints do not describe the actual
content of the database during code execution, like in relational symbolic execution,
but only the results of the SQL queries executed by this code, as if they were non-
interdependent code inputs. As a consequence, the algorithm may generate incomplete
path constraints, missing the fact that the result of a query in a path may depend on
the result of a query executed earlier in this path, as both queries are executed over
a single database. Secondly, [24] only provides a conceptual intuition but no proper
algorithm component for enforcing the data integrity constraints defined in the database
schema. [23] advocates that such a lack leads to the possible generation of invalid test
data and to a poor code coverage. Finally, [24] provides no procedure, nor any conceptual
intuition, about how the proposed algorithm could practically handle the presence of data
modification or transaction management primitives in the tested code, which are both
crucial components of database programs.

6.3. Other related work

As a part of a multi-step approach for generating servlet call sequences to test web
applications, [43] briefly suggests to execute symbolically SQL queries into relational
constraints written in Alloy. The paper proposes to transform SQL queries into a relational
algebra, and provides an example that encodes one relational algebra query into Alloy
constraints. While the relational symbolic execution proposed in [43] is conceptually
similar to ours, it does not account for the symbolic execution of data modification
statements with constraint integrity verification, nor for transaction primitive handling.
Moreover, no formal systemization of the constraint generation process, nor any evaluation
of this process, is proposed. Finally, the target language for the generated constraints is the
Alloy framework, whose poor adequacy for this particular problem has been demonstrated
in this paper.

On a related but complementary level, a substantial amount of work (e.g. [44, 45,
46, 47, 33, 48, 49, 50, 51, 52, 20, 53, 54, 55, 56]) has been done on how to generate test
database content exhibiting some desirable properties, given only the database schema
and possibly some queries to be executed over the database. The main difference between
our work and these approaches is that they essentially work without considering the
control flow of the programs manipulating the database.

Microsoft Qex [52, 20] is probably the one of these techniques which is the closest
to our work, as both approaches are based on the translation of the SQL semantics
into SMT-Lib constraints, solved using Z3. However, the two approaches also exhibit
important differences. Firstly, Qex only considers input generation for a single SQL
SELECT query in isolation and not for pieces of code involving several queries and
modification statements, but the handled queries can be more complex than in our tool.
Secondly, the two techniques translate the SQL semantics into constraints differently: our
tool use predicates and quantifiers to represent relations, while Qex use fixed-size lists of
tuples. Qex involves thus a mechanism similar to Alloy, where the solving process must
be repeated on increasing size for the input relations, in order to find a solution. Such a
mechanism may not be problematic for testing OLTP code units, touching only a limited
number of tuples in the database. However, this approach does not make it possible to
prove formally that a path or path prefix is infeasible, which is done efficiently by our
tool.
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Some database programs are developed to work with data already stored in an existing
database. Some papers [57, 58] study the particular situation where classical test inputs
must be generated for code manipulating in parallel an existing database with a known
input content.

Other work [59, 60, 61] considers mutation testing of database programs, where our
approach performs structural testing. In mutation testing, the quality of the test data
is no more measured in terms of code coverage, as in structural testing, but in terms of
program fault detecting ability (see [4] for a discussion). Some works have also focused
over testing of non-functional aspects of database programs, like security testing [62].
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7. Threats to validity

7.1. Internal validity

The performance comparison between our relational symbolic execution tool and the
SQL normalisation tool from [23] revealed a very strong advantage for relational symbolic
execution, over similar hardware configurations. However, the comparison was performed
on a limited number of small samples and considering tools with different architectures.
We think that the impact of the last element is minor, given the small size of the tested
methods, and cannot explain, on its own, how important the measured performance gap
is. However, this element, as well as the lack of a comparison over a large number of
various complex pieces of code, threaten our ability to conclude, from our experimental
work, that a direct translation of SQL into relational constraints intrinsically improves the
testing time, compared to compiling SQL into native code before generating constraints.

7.2. External validity

The tool we have developed handles a limited subset of the Java/SQL syntax and
was developed in the context of transactional business use cases, i.e. small pieces of
code acting on a limited number of rows in the database. Several elements threaten the
generalisability of our approach to handle any piece of code involving SQL.

Conceptually, our approach can be integrated into any existing symbolic execution tool,
to provide this tool with the ability to handle SQL code. An integration into a state-of-art
tool, able to handle not all, but a wide range of programs in a mainstream programming
language, would strongly improve the practical scope of our technique. However, such an
integration needs to be evaluated in practice.

The handling of a larger part of SQL may require the generation of constraints which
could be hard or impossible to manage by solver technology. Moreover, as SQL is a large
and complex language, fragmented into several dialects, developing an universal SQL
symbolic execution engine, handling any piece of SQL code, will be a very hard task.

Our tool provides no automated way to handle SQL code that has been dynamically
crafted by the program, which can be frequent in practice. Alternate tools have shown
that we could exploit the concretisation mechanism from a state-of-art symbolic execution
tool to alleviate the problem, thanks to the availability of the concrete values for the
dynamically crafted SQL code. However, such an approach fails handling cases where the
syntactic structure of the crafted SQL depends on the inputs of the tested code.

Finally, current solver technologies have shown to face a scalability issue when required
to solve the constraints generated by our tool for a sufficiently large number of SQL
statements. Whether this problem can be solved or at least alleviated, by optimising the
constraint generation or by new solving capabilities, remains an open research question.
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8. Future work

For further work, we have first identified three main research directions. These directions
sketch a path towards a broader evaluation of the approach over many various real pieces
of code, in an industrial context:

Integration with Pex Our tool has demonstrated how a classical symbolic execution
mechanism for a typical programming language could be empowered with the ability
to generate constraints in the presence of SQL code. As this integration provided
promising results, it should now be repeated with a state-of-art tool based on symbolic
execution. Microsoft Pex [18] is a particularly appropriate candidate for integration
with our work, as it is based as well on the Z3 solver. In addition, such an integration
could enable a deeper comparison with the SynDB tool from [23], which is also based
on Pex. The Pex tool is not open-source but provides an extension interface. To
the best of our knowledge, available open-source constraint-based testing tools are
KLEE [14] (used as a core component of the S2E platform [63]) and CREST [64]
(for C code) as well as Symbolic Path Finder [17] (for Java byte-code).

Dynamic SQL Handling By integrating our approach in a tool like Pex, the resulting
tool would benefit for free from a dynamic path exploration process coupled with
heuristics to handle large number of paths. In presence of SQL code that has been
built dynamically as a character string in the tested code, the use of such a dynamic
path exploration would make the concrete values of the assembled string elements
directly available. Like in alternate approaches to ours, this runtime information
should be used to recover the complete structure of the executed SQL code, making
us able to translate it into constraints.

However, such an approach will fail if the code unit’s inputs are used as parts of the
syntactic structure of the dynamically-crafted SQL code. Nevertheless, by choosing
appropriate concrete values for those parts of the inputs defining the syntactic
structure of the dynamic SQL, we could produce representative specialised versions of
the original code unit, which could be properly evaluated symbolically. Interleaving
symbolic execution with such a partial evaluation [65] has already been studied in
another context by [66]. Detecting which parts of the code unit’s inputs should be
made concrete could benefit from existing work (e.g. [67, 68]) over detection of SQL
injections attacks.

Wider SQL Handling In the perspective of testing programs involving many complex
SQL statements, a tighter integration with constraint solving techniques would be
beneficial to offer a better scalability and a larger scope to the approach. The
constraint generator should be tailored so to generate constraints optimised for the
internal algorithms of the solver. Conversely, the development of solving algorithms
or heuristics tailored to the kind of constraints produced by the symbolic execution
of large pieces of complex SQL code should also be considered.

In particular, SQL enables various operations to be performed over data belonging

to various datatypes, such as strings, binary objects, numeric values and timestamps.

Symbolic execution of such operations will produce complex constraints over such

datatypes. If modern SMT solvers like Z3 can already handle many of these con-

straints, work should be done to locate the common parts of SQL which will put
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current solvers into trouble and research should be performed to possibly build a
workaround. Solver development is a particularly dynamic research domain. Notably,
research is ongoing (e.g. [69, 70]) towards a proper solving of string contraints
inter-related with other kinds of constraints, in the context of symbolic execution.
Similarly, recent works (see e.g. [71]) have considered (partial) solving of non-linear
integer arithmetic constraints. Other works have also studied the particular problem
of multi-granularity temporal constraint solving (see e.g. [72]).

However, building optimal constraint generation rules for the whole of SQL is
made difficult by the fact that SQL is large and complex, and can vary strongly
in practice between different DBMS’s versions and manufacturers. A research
direction for overcoming these difficulties would be to use a relational algebra as an
intermediate language for constraint generation, similarly to the approach proposed
in [43]. The symbolic execution engine would compile the original SQL code into
a minimal relational algebra, and then the algebraic operators would be translated
into logical constraints, using a minimal set of translation rules optimised for the
solver. Algorithms translating SQL statements into equivalent combinations of a
core set of relational algebra’s operators are well-known, in the context of query
processing in DBMS design [73]. In practice, this idea should be refined, as SQL
allows non-relational constructs like rows ordering and aggregation, null values etc.
The intermediate language should thus be extended by a minimal set of operators for
describing common and tractable non-relational parts of SQL. Concretisation could
be the last-ditch solution to handle exotic or too complex parts of SQL.

Programs to be tested which manipulate an existing database are common in practice.
Whether and how our technique could select test data from an existing database, instead
of generating them from scratch is an interesting matter of further research.

Constraints typically admit many different solutions. However, our tool uses the
arbitrary solution returned as first by the solver. A possible improvement could be to use
an optimal solution according to some criterion, like for example, a minimal number of
rows in the database. In order to do so, it has recently been announced® that Z3 could
be provided with the ability to return the solution which optimises a given objective
function. Evaluating and integrating this mechanism with our approach is a topic for
future research.

Finally, being somehow parametrised with respect to the paths that should be considered,
our approach can be used with respect to any traditional code coverage criterion based on
the notion of execution path [4]. Nevertheless, several works [74, 75, 76, 77, 60] propose
coverage criteria particularly tailored towards testing of database programs. Integrating
such criteria into our constraint-based approach is a topic of ongoing research.
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