11 research outputs found
Deconstructing classical water models at interfaces and in bulk
Using concepts from perturbation and local molecular field theories of
liquids we divide the potential of the SPC/E water model into short and long
ranged parts. The short ranged parts define a minimal reference network model
that captures very well the structure of the local hydrogen bond network in
bulk water while ignoring effects of the remaining long ranged interactions.
This deconstruction can provide insight into the different roles that the local
hydrogen bond network, dispersion forces, and long ranged dipolar interactions
play in determining a variety of properties of SPC/E and related classical
models of water. Here we focus on the anomalous behavior of the internal
pressure and the temperature dependence of the density of bulk water. We
further utilize these short ranged models along with local molecular field
theory to quantify the influence of these interactions on the structure of
hydrophobic interfaces and the crossover from small to large scale hydration
behavior. The implications of our findings for theories of hydrophobicity and
possible refinements of classical water models are also discussed