6 research outputs found

    FEZ2 Has Acquired Additional Protein Interaction Partners Relative to FEZ1: Functional and Evolutionary Implications

    Get PDF
    BACKGROUND: The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function. METHODOLOGY/PRINCIPAL FINDINGS: Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom. CONCLUSIONS/SIGNIFICANCE: We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins

    A Draft of the Human Septin Interactome

    Get PDF
    Background: Septins belong to the GTPase superclass of proteins and have been functionally implicated in cytokinesis and the maintenance of cellular morphology. They are found in all eukaryotes, except in plants. In mammals, 14 septins have been described that can be divided into four groups. It has been shown that mammalian septins can engage in homo- and heterooligomeric assemblies, in the form of filaments, which have as a basic unit a hetero-trimeric core. In addition, it has been speculated that the septin filaments may serve as scaffolds for the recruitment of additional proteins. Methodology/Principal Findings: Here, we performed yeast two-hybrid screens with human septins 1-10, which include representatives of all four septin groups. Among the interactors detected, we found predominantly other septins, confirming the tendency of septins to engage in the formation of homo- and heteropolymeric filaments. Conclusions/Significance: If we take as reference the reported arrangement of the septins 2, 6 and 7 within the heterofilament, (7-6-2-2-6-7), we note that the majority of the observed interactions respect the ""group rule"", i.e. members of the same group (e. g. 6, 8, 10 and 11) can replace each other in the specific position along the heterofilament. Septins of the SEPT6 group preferentially interacted with septins of the SEPT2 group (p<0.001), SEPT3 group (p<0.001) and SEPT7 group (p<0.001). SEPT2 type septins preferentially interacted with septins of the SEPT6 group (p<0.001) aside from being the only septin group which interacted with members of its own group. Finally, septins of the SEPT3 group interacted preferentially with septins of the SEPT7 group (p<0.001). Furthermore, we found non-septin interactors which can be functionally attributed to a variety of different cellular activities, including: ubiquitin/sumoylation cycles, microtubular transport and motor activities, cell division and the cell cycle, cell motility, protein phosphorylation/signaling, endocytosis, and apoptosis.Fundao de Amparo a Pesquisa do Estado Sao Paulo (Fapesp)CAPES: Coordenao de Aperfeioamento de Pessoal de Navel SuperiorConselho Nacional de Pesquisa e Desenvolvimento (CNPq)Laboratorio Nacional de Biociencias-Centro Nacional de Pesquisa em Energia e Materais (LNBio-CNPEM

    Fasciculation and elongation zeta-1 protein (FEZ1) interacts with the retinoic acid receptor and participates in transcriptional regulation of the Hoxb4 gene

    No full text
    Fasciculation and elongation zeta-1 (FEZ1) protein is involved in axon outgrowth and is highly expressed in the brain. It has multiple interaction partners, with functions varying from the regulation of neuronal development and intracellular transport mechanisms to transcription regulation. One of its interactors is retinoic acid receptor (RAR), which is activated by retinoic acid and controls many target genes and physiological process. Based on previous evidence suggesting a possible nuclear role for FEZ1, we wanted to deepen our understanding of this function by addressing the FEZ1-RAR interaction. We performed in vitro binding experiments and assessed the interface of interaction between both proteins. We found that FEZ1-RAR interacted with a similar magnitude as RAR to its responsive element DR5 and that the interaction occurred in the coiled-coil region of FEZ1 and in the ligand-binding domain of RAR. Furthermore, cellular experiments were performed in order to confirm the interaction and screen for induced target genes from an 86-gene panel. The analysis of gene expression showed that only in the presence of retinoic acid did FEZ1 induce hoxb4 gene expression. This finding is consistent with data from the literature showing the hoxb4 gene functionally involved in development and acute myeloid leukemia, as is FEZ1

    Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages.

    No full text
    Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2-4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation
    corecore