8,594 research outputs found
Thermally induced directed currents in hard rod systems
We study the non equilibrium statistical properties of a one dimensional
hard-rod fluid undergoing collisions and subject to a spatially non uniform
Gaussian heat-bath and periodic potential. The system is able to sustain finite
currents when the spatially inhomogeneous heat-bath and the periodic potential
profile display an appropriate relative phase shift, . By comparison with
the collisionless limit, we determine the conditions for the most efficient
transport among inelastic, elastic and non interacting rods. We show that the
situation is complex as, depending on shape of the temperature profile, the
current of one system may outperform the others.Comment: 5 pages, 2 figure
The distance to the LMC cluster Reticulum from the K-band Period-Luminosity-Metallicity relation of RR Lyrae stars
We present new and accurate Near-Infrared J and Ks-band data of the Large
Magellanic Cloud cluster Reticulum. Data were collected with SOFI available at
NTT and covering an area of approximately (5 x 5) arcmin^2 around the center of
the cluster. Current data allowed us to derive accurate mean K-band magnitudes
for 21 fundamental and 9 first overtone RR Lyrae stars. On the basis of the
semi-empirical K-band Period-Luminosity-Metallicity relation we have recently
derived, we find that the absolute distance to this cluster is 18.52 +- 0.005
(random) +- 0.117 (systematic). Note that the current error budget is dominated
by systematic uncertainty affecting the absolute zero-point calibration and the
metallicity scale.Comment: 14 pages, 2 figures, ApJ accepted. Full resolution figure 1 on
request ([email protected]
Driven low density granular mixtures
We study the steady state properties of a 2D granular mixture in the presence
of energy driving by employing simple analytical estimates and Direct
Simulation Monte Carlo. We adopt two different driving mechanisms: a) a
homogeneous heat bath with friction and b) a vibrating boundary (thermal or
harmonic) in the presence of gravity. The main findings are: the appearance of
two different granular temperatures, one for each species; the existence of
overpopulated tails in the velocity distribution functions and of non trivial
spatial correlations indicating the spontaneous formation of cluster
aggregates. In the case of a fluid subject to gravity and to a vibrating
boundary, both densities and temperatures display non uniform profiles along
the direction normal to the wall, in particular the temperature profiles are
different for the two species while the temperature ratio is almost constant
with the height. Finally, we obtained the velocity distributions at different
heights and verified the non gaussianity of the resulting distributions.Comment: 19 pages, 12 figures, submitted for publicatio
Period-Color and Amplitude-Color Relations in Classical Cepheid Variables - VI. New Challenges for Pulsation Models
We present multiphase Period-Color/Amplitude-Color/Period-Luminosity
relations using OGLE III and Galactic Cepheid data and compare with state of
the art theoretical pulsation models. Using this new way to compare models and
observations, we find convincing evidence that both Period-Color and
Period-Luminosity Relations as a function of phase are dynamic and highly
nonlinear at certain pulsation phases. We extend this to a multiphase Wesenheit
function and find the same result. Hence our results cannot be due to reddening
errors. We present statistical tests and the urls of movies depicting the
Period-Color/Period Luminosity and Wesenheit relations as a function of phase
for the LMC OGLE III Cepheid data: these tests and movies clearly demonstrate
nonlinearity as a function of phase and offer a new window toward a deeper
understanding of stellar pulsation. When comparing with models, we find that
the models also predict this nonlinearity in both Period-Color and
Period-Luminosity planes. The models with (Z=0.004, Y=0.25) fare better in
mimicking the LMC Cepheid relations, particularly at longer periods, though the
models predict systematically higher amplitudes than the observations
Multiphase PC/PL Relations: Comparison between Theory and observations
Cepheids are fundamental objects astrophysically in that they hold the key to
a CMB independent estimate of Hubble's constant. A number of researchers have
pointed out the possibilities of breaking degeneracies between Omega_Matter and
H0 if there is a CMB independent distance scale accurate to a few percent (Hu
2005). Current uncertainties in the distance scale are about 10% but future
observations, with, for example, the JWST, will be capable of estimating H0 to
within a few percent. A crucial step in this process is the Cepheid PL
relation. Recent evidence has emerged that the PL relation, at least in optical
bands, is nonlinear and that neglect of such a nonlinearity can lead to errors
in estimating H0 of up to 2 percent. Hence it is important to critically
examine this possible nonlinearity both observationally and theoretically.
Existing PC/PL relations rely exclusively on evaluating these relations at mean
light. However, since such relations are the average of relations at different
phases. Here we report on recent attempts to compare theory and observation in
the multiphase PC/PL planes. We construct state of the art Cepheid pulsations
models appropriate for the LMC/Galaxy and compare the resulting PC/PL relations
as a function of phase with observations. For the LMC, the (V-I) period-color
relation at minimum light can have quite a narrow dispersion (0.2-0.3 mags) and
thus could be useful in placing constraints on models. At longer periods, the
models predict significantly redder (by about 0.2-0.3 mags) V-I colors. We
discuss possible reasons for this and also compare PL relations at various
phases of pulsation and find clear evidence in both theory and observations for
a nonlinear PL relation.Comment: 5 pages, 8 figures, proceeding for "Stellar Pulsation: Challenges for
Theory and Observation", Santa Fe 200
Which is the temperature of granular systems? A mean field model of free cooling inelastic mixtures
We consider a mean field model describing the free cooling process of a two
component granular mixture, a generalization of so called Maxwell model. The
cooling is viewed as an ordering process and the scaling behavior is attributed
to the presence of an attractive fixed point at for the dynamics. By
means of asymptotic analysis of the Boltzmann equation and of numerical
simulations we get the following results: 1)we establish the existence of two
different partial granular temperatures, one for each component, which violates
the Zeroth Law of Thermodynamics; 2) we obtain the scaling form of the two
distribution functions; 3) we prove the existence of a continuous spectrum of
exponents characterizing the inverse-power law decay of the tails of the
velocity, which generalizes the previously reported value 4 for the pure model;
4) we find that the exponents depend on the composition, masses and restitution
coefficients of the mixture; 5) we also remark that the reported distributions
represent a dynamical realization of those predicted by the Non Extensive
Statistical Mechanics, in spite of the fact that ours stem from a purely
dynamical approach.Comment: 23 pages, 9 figures. submitted for publicatio
Decision-making in advanced heart failure patients requiring LVAD insertion: can preoperative simulation become the way forward? A case study
Clinical practice heavily relies on results from randomized controlled trials, which may not reflect completely individual patients.
Patient-specific modelling has received increasing attention in recent years. Although still far from clinical application on a daily basis, the potential of this approach is significant. The treatment of advanced heart failure may benefit from a modelling framework to guide device treatment and predict outcome. The role of mechanical circulatory support as a long-term solution is increasing in view of the evolving technology and worsening heart failure patient population. Therefore, a preoperative strategy with the ability to predict the course of events in a simulation setting may be justified. Here we present a heart failure patient
discussed at a multidisciplinary team meeting whose outcome was compared with simulations carried out with CARDIOSIM (C) software to investigate the role of this approach as a planning strategy to guide intervention and predict outcome. The clinical decision process is complex and many factors are involved. Patient-specific modelling may have a role to play as part of a preoperative planning strategy with more quantitative evaluation to smooth decision-making
Proposal for soft-x-ray and XUV lasers in capillary discharges
Includes bibliographical references (page 567).Capillary plasmas with large length-to-diameter ratios (1/d > 100) are proposed as amplification media for soft-x-ray and XUV radiation by direct discharge excitation. The capillary geometry provides a small volume and an adequate resistance for ohmic heating. Heat conduction to the capillary walls provides rapid cooling of the plasma during the decay of the excitation pulse, resulting in a large recombination rate and a population inversion. A time-dependent collisional-radiative model of the capillary plasma predicts gains of the order of 5 cm-1 in the 18.2-nm line of C VI
- …