268 research outputs found

    Multidimensional Stationary Probability Distribution for Interacting Active Particles

    Full text link
    We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the "pressure" generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles.Comment: 5 pages, 2 figure

    Velocity distribution in active particles systems

    Get PDF
    We derive an analytic expression for the distribution of velocities of multiple interacting active particles which we test by numerical simulations. In clear contrast with equilibrium we find that the velocities are coupled to positions. Our model shows that, even for two particles only, the individual velocities display a variance depending on the interparticle separation and the emergence of correlations between the velocities of the particles. When considering systems composed of many particles we find an analytic expression connecting the overall velocity variance to density, at the mean-field level, and to the pair distribution function valid in the limit of small noise correlation times. Finally we discuss the intriguing analogies and main differences between our effective free energy functional and the theoretical scenario proposed so far for phase-separating active particles

    ELT-HIRES the high resolution spectrograph for the ELT: application of E2E + ETC for instrument characterisation, from efficiency to accuracy in radial velocity measurements

    Get PDF
    We present an application of the HIRES End-to-End (E2E) simulator and HIRES Exposure Time Calculator (ETC) to derive a more detailed behavior of the spectrograph efficiency by including physical modeling of diffraction at the echelle grating and the cross-disperser. The result will be used with the Spectral Energy Distributions of calibration lights for wavelength solutions and flat fielding to quantitatively characterize the spectrograph in terms of achieved accuracy. By showing the contribution of photon noise, detector noise and cross talk between adjacent fibers we discuss methods that could be used to determine the overall performance of the instrument, in term of the capability of photon collection as well as especially on the achieved precision on wavelength calibration that translates directly in radial velocity accuracy of the scientific light

    The baseline comorbidity burden affects survival in elderly patients with acute myeloid leukemia receiving hypomethylating agents: Results from a multicentric clinical study

    Get PDF
    Background: In older patients with acute myeloid leukemia (AML), the definition of fitness, prognosis, and risk of death represents an open question. Methods: In the present study, we tested the impact on survival of disease- and patient-related parameters in a large cohort of elderly AML patients homogeneously assigned to treatment with hypomethylating agents (HMAs). Results: In 131 patients with a median age of 76 years, we confirmed that early response (<0.001) and biology-based risk classification (p = 0.003) can select patients with better-predicted survival. However, a full disease-oriented model had limitations in stratifying our patients, prompting us to investigate the impact of baseline comorbidities on overall survival basing on a comorbidity score. The albumin level (p = 0.001) and the presence of lung disease (p = 0.013) had a single-variable impact on prognosis. The baseline comorbidity burden was a powerful predictor of patients' frailty, correlating with increased incidence of adverse events, especially infections, and predicted overall survival (p < 0.001). Conclusion: The comorbidity burden may contribute to impact prognosis in addition to disease biology. While the therapeutic armamentarium of elderly AML is improving, a comprehensive approach that combines AML biology with tailored interventions to patients' frailty is likely to fully exploit the anti-leukemia potential of novel drugs

    Ground-breaking Exoplanet Science with the ANDES spectrograph at the ELT

    Full text link
    In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio during a planetary transit. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the ELT. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA's JWST and ESA's ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.Comment: 66 pages (103 with references) 20 figures. Submitted to Experimental Astronom

    ELT high resolution spectrograph: phase-A software architecture study

    Get PDF
    High resolution spectroscopy has been considered of a primary importance to exploit the main scientific cases foreseen for ESO ELT, the Extremely Large Telescope, the future largest optical-infrared telescope in the world. In this context ESO commissioned a Phase-A feasibility study for the construction of a high resolution spectrograph for the ELT, tentatively named HIRES. The study, which lasted 1.5 years, started on March 2016 and was completed with a review phase held at Garching ESO headquarters with the aim to assess the scientific and technical feasibility of the proposed instrument. One of the main tasks of the study is the architectural design of the software covering all the aspects relevant to control an astronomical instrument: from observation preparation through instrument hardware and detectors control till data reduction and analysis. In this paper we present the outcome of the Phase-A study for the proposed HIRES software design highlighting its peculiarities, critical areas and performance aspects for the whole data flow. The End-toEnd simulator, a tool already capable of simulating HIRES end products and currently being used to drive some design decision, is also shortly described

    T-REX OU4 HIRES: the high resolution spectrograph for the E-ELT

    Get PDF
    The goal of this unit was to consolidate the project for the construction of the high resolution spectrometer of the E-ELT (HIRES). The task included the development of scientific cases and tools to predict the instrumental performances. From the technical point of view it included several R&D activities in collaboration with highly specialized Italian companies; it culminated with the detailed design of a highly modular instrument based on well established technologies. From the management point of view it lead to the consolidation of a large international consortium that spans over 12 countries and includes most of the European and ESO-related institutes interested in high resolution spectroscopy. This consortium is led by INAF; its formal creation is awaiting the official call by ESO for the phase-A study for the HIRES instrument of the E-ELT

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‾t\overline{t}, W+bb‾W+b\overline{b} and W+cc‾W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓνW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study

    Get PDF
    We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature's fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber- fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 μm at a spectral resolution of 100,000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU
    • …
    corecore