46 research outputs found

    Synergism of Cattle and Bison Inoculum on Ruminal Fermentation and Select Bacterial Communities in an Artificial Rumen (Rusitec) Fed a Barley Straw Based Diet

    Get PDF
    This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33 and 100:0) replicated in two Rusitec apparatuses (n=8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13-15, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured on d 9-12. Protozoa counts were determined at d 9, 11, 13 and 15 and particle-associated bacteria (PAB) from d 13-15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect (P0.05). Increasing bison inoculum linearly increased (P<0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response (P<0.05) was observed for daily NH3-N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased (P<0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii. Increasing bison inoculum had a quadratic effect (P<0.05) on Fibrobacter succinogenes, and tended to linearly (P<0.10) increase Ruminococcus flavefaciens and decrease (P<0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fibre. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw

    Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves.

    Get PDF
    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development

    Maintenance and Growth Requirements in Male Dorper × Santa Ines Lambs

    Get PDF
    The aim of this study was to estimate the energy and protein requirements for maintenance and growth of lambs. A total of 35 crossbreed Dorper × Santa Ines lambs [31 ± 1.28 kg of initial body weight (BW) and 4 months old] were distributed in a completely randomized design with three treatments groups (ad libitum, 30 and 60% of feed restriction). Five lambs were slaughtered at the beginning of the experimental trial as a reference group to estimate the initial empty BW (EBW) and body composition. When the animals of the ad libitum treatment reached a BW average of 47.2 kg, at day 84 of trial, all lambs were slaughtered. The feed restriction promoted reduction in body fat (P &lt; 0.001) and energy concentration (P &lt; 0.001), while protein showed a quadratic response (P = 0.05). The equations obtained for NEg and NPg requirements were 0.2984 × EBW0.75 × EBWG0.8069 and 248.617 × EBW−0.15546, respectively. The net energy (NEm) and protein (NPm) for maintenance were 71.00 kcal/kg EBW0.75/day and 1.76 g/kg EBW0.75/day, respectively. In conclusion, the NEg and NPg requirement for lambs with 30 kg of BW and 200 g of average daily gain (ADG) were 0.736 Mcal/day and 24.38 g/day, respectively. Our findings indicate that the NEm for crossbreed Dorper × Santa Ines lambs is similar to those recommended by the international committees; however, we support the hypothesis that the requirements for gain are lower

    Mammary gland development of dairy heifers fed diets containing increasing levels of metabolisable protein: metabolisable energy

    Get PDF
    This study was conducted to evaluate the development of the mammary gland in Holstein heifers subjected to different dietary metabolisable protein (MP): metabolisable energy (ME) ratios. Twenty-five Holstein heifers (initial body weight (BW) 213±13·5 kg and initial average age 7·8±0·5 months) were divided into five treatments. The treatments were designed to provide MP:ME ratios equal to 33, 38, 43, 48, and 53 g of MP per Mcal of ME. All diets were formulated to have the same energy content (2·6 Mcal ME/kg dry matter). Actual MP:ME ratios were 36·2, 40·2, 46·2, 47·1, and 50·8 g MP/Mcal ME. The experiment was conducted in a randomised block design, while considering initial BW as a blocking factor to evaluate pre- and post-pubertal periods. Block effect was not observed for all variables evaluated; hence it was considered that the diets had the same influence both on pre- and post-pubertal phases. Dry matter and nutrient intake did not change between treatments, excepting protein intake and digestibility. Serum concentrations of insulin-like growth factor 1 increased linearly across treatments. Changes in the pixel brightness of mammary gland ultrasound images, which are associated with lipid content, were significantly influenced by MP:ME ratios in the diet of heifers that were subjected to accelerated growth rates. It is not recommended to use diets of less than 38 g MP/Mcal ME in diets to heifers allowed to gain more than 1 kg/d

    Supplementation strategies affect the feed intake and performance of grazing replacement heifers.

    No full text
    The literature lacks studies investigating the performance of supplemented replacement heifers grazing on intensively managed warm-season pasture. Our objective was to evaluate the effects of supplement composition (energetic or protein) on the performance, muscle development, thermogenisis, nutrient intake, and digestibility of replacement Holstein heifers grazing Mombaça grass. Eighteen Holstein heifers with an average age and initial body weight (BW) of 12.57 ± 2.54 mo and 218.76 ±47.6 kg, respectively, were submitted to a randomized block design, with six replicates on a rotational grazing system of Panicum maximum cv. Mombaça pasture. Treatments were: control (CON; mineral salt ad libitum); energy supplement (ENE; corn meal as supplement, 8% CP and 3.78 Mcal/kg DE); and protein supplement (PRO; corn and soybean meal, 25% CP and 3.66 Mcal/kg DE). Supplements were individually fed at 0.5% BW. The experiment lasted 120 days, subdivided into three periods. Titanium dioxide and indigestible neutral detergent fiber (iNDF) were used to estimate the intakes and digestibility of the nutrients. BW, wither height, thoracic circumference, body length, and ultrasound of ribeye fat thickness measurements were taken once per period. Body condition score (BCS) was assessed twice during the experiment. The MIXED procedure of SAS, including period as a repeated measure, was used and significance was declared at P ≤ 0.05. Dry matter intake (DMI), CP intake (CPI) and DE intake were greater in heifers fed PRO compared to CON and ENE. Heifers supplemented with ENE had the lowest DMI. Treatment affected pasture intake/BW; it was similar between PRO and CON heifers, and lower for the ENE treatment. A treatment × period interaction was observed for NDF intake (%BW), in which heifers fed PRO and CON had the greatest NDF intake and ENE had the lowest. The digestibility of DM was the greatest in PRO-supplemented heifers and the lowest in CON heifers. Heifers fed ENE had decreased CP digestibility compared to PRO and CON heifers. Average daily gain (ADG) and thoracic circumference gain were greatest in the PRO treatment. BCS was greater in PRO compared to CON and ENE heifers. Supplementing Holstein heifers at 0.5% BW using PRO supplementation resulted in better animal performance, primarily greater ADG, than feeding ENE or not supplementing (CON). In conclusion, our results indicate that dairy heifers should be fed a protein supplement when grazing intensively managed Mombaça grass pasture

    Evaluation of the length of adaptation period for changeover and crossover nutritional experiments with cattle fed tropical forage-based diets

    No full text
    It was evaluated the impact of the diet switch on nutritional characteristics and bacterial community composition in cattle fed tropical forage-based diet aiming to establish the minimal length of the adaptation period that could be applied to changeover or crossover design protocols. Twelve rumen-cannulated crossbreed (B. taurus × B. indicus) bovines were used in this experiment (four young bulls, four steers, and four heifers). The experiment lasted 60 days and two diet switches were done at d 21 and d 41. Four diet sequences were evaluated (one animal of each category per sequence): sugarcane-corn silage-sugarcane, corn silage-sugarcane-corn silage, high-low-high concentrate diets, and low-high-low concentrate diets. All diets were adjusted to 110 g crude protein/kg dry matter by using urea. Four groups of variables were evaluated along experimental days: voluntary intake characteristics, fecal excretion and composition, ruminal digesta compostion, and ruminal fermentation profile. The pattern of the groups along time was interpreted through a non-hierarchical clustering procedure and the stabilization of each group of characteristics was achieved within 9–13, 9–14, 6–13, and 4–11 days after diet switch, respectively. The diversity of the liquid-associated rumen bacterial community was also evaluated by using PCR-DGGE in the young bulls from 6 days before to 20 days after the second diet switch. The pattern of microbial diversity was evaluated through a clustering procedure using the unweight pair group method with arithmetic mean. The bacterial community in the liquid phase stabilized within 3–9 days after diet switch. From the results of this experiment, among all obtained times to adapt intake, fecal and digesta composition, and ruminal fermentation and microbial diversity, a 14-days adaptation period is recommended for changeover and crossover experiments with cattle fed tropical forage-based diets
    corecore