95 research outputs found

    Centro 3R: Organ and tissue sharing project

    Get PDF
    To optimize sharing of organs/tissues from animals humanely sacrificed for (scientific or research) projects approved by the Ministry of Health, by considering that functional - but not only functional - experiments often require using fresh tissues, the 3R Centre is establishing a pilot project involving the University of Genoa and the University of Pisa and their OPBA, enabling sharing fresh tissues through platforms on territorial basis (that might be connected on platform networks) allowing the researcher to use at best valuable biological resource. Implementation of the project would allow establishing protocols for organ/tissue sharing including fresh preparations, therefore meeting more requests than the frozen/fixed tissues. The project by allowing strict collaboration and exchange between researchers would complement the Ministry of Health platform for tissue sharing and would contribute to step forward on the effective reduction of animal use for experimental purpose

    Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development?

    Get PDF
    open5The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.openGuidolin, Diego; Marcoli, Manuela; Tortorella, Cinzia; Maura, Guido; Agnati, Luigi FGuidolin, Diego; Marcoli, Manuela; Tortorella, Cinzia; Maura, Guido; Agnati, Luigi

    Modulating brain integrative actions as a new perspective on pharmacological approaches to neuropsychiatric diseases

    Get PDF
    : A critical aspect of drug development in the therapy of neuropsychiatric diseases is the "Target Problem", that is, the selection of a proper target after not simply the etiopathological classification but rather the detection of the supposed structural and/or functional alterations in the brain networks. There are novel ways of approaching the development of drugs capable of overcoming or at least reducing the deficits without triggering deleterious side effects. For this purpose, a model of brain network organization is needed, and the main aspects of its integrative actions must also be established. Thus, to this aim we here propose an updated model of the brain as a hyper-network in which i) the penta-partite synapses are suggested as key nodes of the brain hyper-network and ii) interacting cell surface receptors appear as both decoders of signals arriving to the network and targets of central nervous system diseases. The integrative actions of the brain networks follow the "Russian Doll organization" including the micro (i.e., synaptic) and nano (i.e., molecular) levels. In this scenario, integrative actions result primarily from protein-protein interactions. Importantly, the macromolecular complexes arising from these interactions often have novel structural binding sites of allosteric nature. Taking G protein-coupled receptors (GPCRs) as potential targets, GPCRs heteromers offer a way to increase the selectivity of pharmacological treatments if proper allosteric drugs are designed. This assumption is founded on the possible selectivity of allosteric interventions on G protein-coupled receptors especially when organized as "Receptor Mosaics" at penta-partite synapse level

    Exosomes from astrocyte processes: Signaling to neurons

    Get PDF
    open13It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or longdistance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.openVenturini A.; Passalacqua M.; Pelassa S.; Pastorino F.; Tedesco M.; Cortese K.; Gagliani M.C.; Leo G.; Maura G.; Guidolin D.; Agnati L.F.; Marcoli M.; Cervetto C.Venturini, A.; Passalacqua, M.; Pelassa, S.; Pastorino, F.; Tedesco, M.; Cortese, K.; Gagliani, M. C.; Leo, G.; Maura, G.; Guidolin, D.; Agnati, L. F.; Marcoli, M.; Cervetto, C

    Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP

    No full text
    We found that both \u3b1-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate autoreceptors were present on the glutamate-releasing terminals of cerebellar parallel/climbing fibers and that they functioned as facilitatory autoreceptors. Extracellular cGMP inhibited the neurotransmitter release evoked by presynaptic kainate receptor activation; the inhibitory effect of extracellular cGMP was selective for the kainate autoreceptor-mediated response and did not affect the AMPA autoreceptor-mediated response. Endogenously synthesized cGMP might be the physiological source for the extracellular cGMP modulating the response to kainate autoreceptor activatio

    Volume transmission in central dopamine and noradrenaline neurons and its astroglial target

    No full text
    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor\u2013receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural\u2013glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron\u2013glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin\u2013angiotensin system and in the production of longdistance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease

    Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures

    No full text
    Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs
    corecore